Combined particle swarm optimization and heuristic fuzzy inference systems for a smart home one-step-ahead load forecasting

2012 ◽  
Vol 37 (1) ◽  
pp. 44-53 ◽  
Author(s):  
Chao-Ming Huang ◽  
Sung-Pei Yang ◽  
Hong-Tzer Yang ◽  
Yann-Chang Huang
2018 ◽  
Vol 13 ◽  
pp. 174830181879706 ◽  
Author(s):  
Song Qiang ◽  
Yang Pu

In this work, we summarized the characteristics and influencing factors of load forecasting based on its application status. The common methods of the short-term load forecasting were analyzed to derive their advantages and disadvantages. According to the historical load and meteorological data in a certain region of Taizhou, Zhejiang Province, a least squares support vector machine model was used to discuss the influencing factors of forecasting. The regularity of the load change was concluded to correct the “abnormal data” in the historical load data, thus normalizing the relevant factors in load forecasting. The two parameters are as follows Gauss kernel function and Eigen parameter C in LSSVM had a significant impact on the model, which was still solved by empirical methods. Therefore, the particle swarm optimization was used to optimize the model parameters. Taking the error of test set as the basis of judgment, the optimization of model parameters was achieved to improve forecast accuracy. The practical examples showed that the method in the work had good convergence, forecast accuracy, and training speed.


2021 ◽  
Author(s):  
Hongmei Xu ◽  
Juan Liu ◽  
Kun Wang ◽  
Songtao Kong ◽  
Yong Shi

Abstract A hybrid fuzzy inference-quantum particle swarm optimization (FI-QPSO) algorithm is developed to estimate the temperature-dependent thermal properties of grain. The fuzzy inference scheme is established to determine the contraction-expansion coefficient according to the aggregation degree of particles. The heat transfer process in the grain bulk is solved using the finite element method (FEM), and the estimation task is formulated as an inverse problem. Numerical experiments are performed to study the effects of the surface heat flux, number of measurement points, measurement errors and the individual space on the estimation results. Comparison with the quantum particle swarm optimization (QPSO) algorithm and conjugate gradient method (CGM) is also conducted, and it shows the validity of the estimation method established in this paper.


2018 ◽  
Vol 173 ◽  
pp. 02016
Author(s):  
Jin Liang ◽  
Wang Yongzhi ◽  
Bao Xiaodong

The common method of power load forecasting is the least squares support vector machine, but this method is very dependent on the selection of parameters. Particle swarm optimization algorithm is an algorithm suitable for optimizing the selection of support vector parameters, but it is easy to fall into the local optimum. In this paper, we propose a new particle swarm optimization algorithm, it uses non-linear inertial factor change that is used to optimize the algorithm least squares support vector machine to avoid falling into the local optimum. It aims to make the prediction accuracy of the algorithm reach the highest. The experimental results show this method is correct and effective.


Sign in / Sign up

Export Citation Format

Share Document