Trends of winter precipitation extremes over Northwest Himalaya

Author(s):  
N. Narasimha Rao ◽  
Usha Devi ◽  
M. S. Shekhar ◽  
G. P. Singh
2006 ◽  
Vol 2 (2) ◽  
pp. 157-189 ◽  
Author(s):  
A. Pauling ◽  
H. Paeth

Abstract. We investigate the changes of extreme European winter (December–February) precipitation over the last half millennium and show for various European regions that return periods of extremely wet and dry winters are subject to significant changes both before and after the onset of anthropogenic influences. Additionally, we examine the spatial pattern of the changes of the extremes covering the last 300 years where data quality is sufficient. Over central and eastern Europe dry winters occurred more frequently during the 18th and the second part of the 19th century relative to 1951–2000. Dry winters were less frequent during both the 18th and 19th century over the British Isles and the Mediterranean. Wet winters have been less abundant during the last three centuries compared to 1951–2000 except during the early 18th century in central Europe. Although winter precipitation extremes are affected by climate change, no obvious connection of these changes was found to solar, volcanic or anthropogenic forcing. However, physically meaningful interpretation with atmospheric circulation changes was possible.


2007 ◽  
Vol 3 (1) ◽  
pp. 65-76 ◽  
Author(s):  
A. Pauling ◽  
H. Paeth

Abstract. We investigate the changes of extreme European winter (December-February) precipitation back to 1700 and show for various European regions that return periods of extremely wet and dry winters are subject to significant changes both before and after the onset of anthropogenic influences. Generally, winter precipitation has become more extreme. We also examine the spatial pattern of the changes of the extremes covering the last 300 years where data quality is sufficient. Over central and Eastern Europe dry winters occurred more frequently during the 18th and the second part of the 19th century relative to 1951–2000. Dry winters were less frequent during both the 18th and 19th century over the British Isles and the Mediterranean. Wet winters have been less abundant during the last three centuries compared to 1951–2000 except during the early 18th century in central Europe. Although winter precipitation extremes are affected by climate change, no obvious connection of these changes was found to solar, volcanic or anthropogenic forcing. However, physically meaningful interpretation with atmospheric circulation changes was possible.


2016 ◽  
Vol 29 (13) ◽  
pp. 5009-5026 ◽  
Author(s):  
Mariza Costa-Cabral ◽  
John S. Rath ◽  
William B. Mills ◽  
Sujoy B. Roy ◽  
Peter D. Bromirski ◽  
...  

Abstract Large-scale climatic indices have been used as predictors of precipitation totals and extremes in many studies and are used operationally in weather forecasts to circumvent the difficulty in obtaining robust dynamical simulations of precipitation. The authors show that the sea level pressure North Pacific high (NPH) wintertime anomaly, a component of the Northern Oscillation index (NOI), provides a superior covariate of interannual precipitation variability in Northern California, including seasonal precipitation totals, drought, and extreme precipitation intensity, compared to traditional ENSO indices such as the Southern Oscillation index (SOI), the multivariate ENSO index (MEI), Niño-3.4, and others. Furthermore, the authors show that the NPH anomaly more closely reflects the influence of Pacific basin conditions over California in general, over groups of stations used to characterize statewide precipitation in the Sierra Nevada range, and over the southern San Francisco Bay region (NASA Ames Research Center). This paper uses the term prediction to refer to the estimation of precipitation (the predictand) from a climate covariate (the predictor), such as a climate index, or atmospheric moisture. In this sense, predictor and predictand are simultaneous in time. Statistical models employed show the effectiveness of the NPH winter anomaly as a predictor of total winter precipitation and daily precipitation extremes at the Moffett Field station. NPH projected by global climate models is also used in conjunction with atmospheric humidity [atmospheric specific humidity (HUS) at the 850-hPa level] to obtain projections of mean and extreme precipitation. The authors show that future development of accurate forecasts of NPH anomalies issued several months in advance is important for forecasting total winter precipitation and is expected to directly benefit water resource management in California. Therefore, the authors suggest that investigating the lead-time predictability of NPH anomalies is an important direction for future research.


2002 ◽  
Vol 33 (5) ◽  
pp. 415-424 ◽  
Author(s):  
Cintia B. Uvo ◽  
Ronny Berndtsson

Climate variability and climate change are of great concern to economists and energy producers as well as environmentalists as both affect the precipitation and temperature in many regions of the world. Among those affected by climate variability is the Scandinavian Peninsula. Particularly, its winter precipitation and temperature are affected by the variations of the so-called North Atlantic Oscillation (NAO). The objective of this paper is to analyze the spatial distribution of the influence of NAO over Scandinavia. This analysis is a first step to establishing a predictive model, driven by a climatic indicator such as NAO, for the available water resources of different regions in Scandinavia. Such a tool would be valuable for predicting potential of hydropower production one or more seasons in advance.


Sign in / Sign up

Export Citation Format

Share Document