Zinc Recovery from a Lead–Zinc–Copper Ore by Ultrasonically Assisted Column Flotation

2014 ◽  
Vol 33 (4) ◽  
pp. 349-356 ◽  
Author(s):  
Hulya Kursun ◽  
Ugur Ulusoy
Author(s):  
Ugur Ulusoy ◽  
Hulya Kurşun

Zinc is a key beneficiary of economic development for the developing countries. While the global zinc mine production in 2019 was recorded as 13 million tons, the value of zinc mined in 2019, based on zinc contained in concentrate, was about $2.1 billion. Sphalerite or zinc blende (ZnS), which is the main source of zinc, provides more than 90 % of zinc productions today. Beneficiation is usually carried out by flotation to produce marketable concentrates (45–55 %Zn). The flotation, which is the most widely used separation process at fine sizes for the concentration of low grade complex Pb-Cu-Zn ores plays an important role in the global economy. In any concentration plant employing flotation technique huge quantity of ores are being processed. Thus, any increments in the flotation recovery are important to get higher profits and to ensure that resources are utilized optimally. In this review, a comparative evaluation was made between mechanical flotation (MF) [1] and column (CF) [2] cells with or without ultrasonic pre-treatment (UP) for zinc recovery from lead-zinc-copper ore and the effect of UP on the MF and CF experiments were investigated at the optimized conditions. When compared with the optimized parameters, UP increased zinc grade and recovery for both MF and CF techniques as supported by XRD patterns. Besides, the best zinc grade and recovery was obtained by UP with CF technique. So that, sphalerite mineral can be effectively beneficiated to produce saleable zinc concentrate product and UP with CF will lead to a higher metallurgical gains and improvements to Net Smelter Return (NSR). This positive effect of ultrasound, which is safe and eco-friendly, on the zinc flotation by both mechanical cell and column cell regarding zinc grade and recovery is in good agreement with the previous published works in the literature


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdolrahim Foroutan ◽  
Majid Abbas Zadeh Haji Abadi ◽  
Yaser Kianinia ◽  
Mahdi Ghadiri

AbstractCollector type and pulp pH play an important role in the lead–zinc ore flotation process. In the current study, the effect of pulp pH and the collector type parameters on the galena and sphalerite flotation from a complex lead–zinc–iron ore was investigated. The ethyl xanthate and Aero 3418 collectors were used for lead flotation and Aero 3477 and amyl xanthate for zinc flotation. It was found that maximum lead grade could be achieved by using Aero 3418 as collector at pH 8. Also, iron and zinc recoveries and grades were increased in the lead concentrate at lower pH which caused zinc recovery reduction in the zinc concentrate and decrease the lead grade concentrate. Furthermore, the results showed that the maximum zinc grade and recovery of 42.9% and 76.7% were achieved at pH 6 in the presence of Aero 3477 as collector. For both collectors at pH 5, Zinc recovery was increased around 2–3%; however, the iron recovery was also increased at this pH which reduced the zinc concentrate quality. Finally, pH 8 and pH 6 were selected as optimum pH values for lead and zinc flotation circuits, respectively.


1925 ◽  
Vol 2 (12) ◽  
pp. 1151
Author(s):  
Anaconda Copper Mining Co.
Keyword(s):  

2021 ◽  
Vol 295 ◽  
pp. 03008
Author(s):  
Marinela Panayotova ◽  
Vladko Panayotov

Results from laboratory experiments are presented on extraction of zinc available in waste from lead-zinc metallurgy, mixed with lead-zinc flotation tailings and some waste rock, by leaching it under atmospheric conditions with sulfuric acid (H2SO4) solutions (5 and 10 wt. %) and 30 % hydrogen peroxide in the temperature range of 25 - 80 °C, at leaching time 30 - 120 min. Material leaching with 10 % H2SO4 solution at 70 °C for one hour brings into pregnant leach solution (PLS) around 80 % of zinc available. Imposing an electrochemical impact during the leaching process increases the quantity of leached zinc by around 5 %. Direct electrowinning from the PLS obtains zinc metal of grade 75-76 %. The suggested treatment removes metals-pollutants from accumulated mixed technogenic waste therefore rendering it more environmentally friendly. Experiments showed that old mixed waste from mining, mineral processing and metallurgy activities merits further studies as secondary source of metals.


2021 ◽  
Vol 2 (3) ◽  
pp. 239-247
Author(s):  
Ivan A. Konovalov

The collecting capacity of xanthate, dithiocarbamate and their combination was studied. The effect of activity with respect to the gas-liquid interface of derivative forms of reagents represented by physically sorbed forms of collector was considered. Flotation experiments of lead-zinc ore from the Gorevsky deposit showed an increase in flotation performance when using reagent combinations. The use of a collector with pronounced chemisorbable properties in combination with a reagent having surface-active properties towards the gas-liquid interface caused an increase in the recovery of useful component. It was determined that activity of the physical form of sorption affects the selectivity of lead and zinc recovery - as activity of the physically sorbed form of reagent decreases, the selectivity of recovery grows.


2021 ◽  
Vol 12 (1) ◽  
pp. 040-046
Author(s):  
Ekaterina Zolotova ◽  

The metallurgical industry is one of the major pollution sources of natural ecosystems. Now the slag dumps of non-ferrous industries occupy huge areas all over the world. The purpose of this literature review was to assess the knowledge degree of the soils and vegetation formed on the non-ferrous metallurgy slag dumps. Most of the research was carried out for the dumps of the copper-smelting (including old dumps) and lead-zinc industries, the dumps of the nickel and aluminum industries have been studied to a lesser extent. The composition of non-ferrous metallurgy slags, the issues of soil pollution with heavy metals, their bioavailability were discussed. The influence of heavy pollution on the biodiversity of pioneer plant communities on the slag dumps of non-ferrous metallurgy and the floristic composition for abandoned copper ore deposits are noted. The experience of Russian scientists in the reclamation of an aluminum sludge dump and Chinese scientists in the reclamation of zinc production slag dumps are considered. The possibility of introducing waste from the copper smelting slag recycling waste into natural ecosystems was discussed. The analysis of literature revealed gaps in knowledge about the gradual formation of the soil and vegetation on man-made landscapes, about the plant biodiversity in conditions of heavy pollution, ways of their adaptation, and the heavy metals accumulation by different plant species.


2017 ◽  
Vol 262 ◽  
pp. 122-125
Author(s):  
Alexander V. Epiforov ◽  
Aleksey N. Seleznev ◽  
Yuriy Ye. Emelyanov ◽  
Stanislav V. Balikov ◽  
Lyudmila Ye. Shketova ◽  
...  

Heap biooxidation is the most economic option of treating processing plants tailings and refractory ores containing non-ferrous and precious metals and sulphides.Pyrite tailings of copper ore processing (Sample 1), tailings of sulphide copper-nickel ore processing (Sample 2) and double refractory gold-bearing ore (Sample 3) were studied.Autotrophic microorganisms Acidithiobacillusthiooxidans and Acidithiobacillusferrooxidans were used for the tests. The duration of heap biooxidation tests for Samples 1, 2 and 3 was 6, 10 and 16 months, respectively. The rates of copper and zinc recovery into solution during heap biooxidation of Sample 1 were 68% and 71%, respectively; the rates of copper and nickel recovery from Sample 2 were 50% and 75%, respectively. Base metals were extracted from solution to selective high-grade concentrates after biooxidation.Biooxidation tailings of Samples 1 and 3 were leached using an alkaline sodium cyanide solution. The recovery of gold from Sample 1 and Sample 2 was 65% and 85%, respectively.


2010 ◽  
Vol 92 ◽  
pp. 13-21
Author(s):  
Han Ping Zhang ◽  
Xiao Li Wang ◽  
Xu Ming Wang ◽  
Sheng Jian ◽  
Qun Zhao

The run-of-mine of complex lead-zinc ores in Yunnan contains 3.26% lead and 2.54% zinc. When traditional selective flotation flowsheet was adopted, 3.77% yield and 61.92% grade of lead concentrate as well as 5.65% yield and 38.67% grade of zinc concentrate were achieved. Simultaneously, 72.39% lead recovery and 3.83% zinc grade in lead concentrate as well as 80.64% zinc recovery and 6.39% lead grade in zinc concentrate were obtained. Lead concentrate and zinc concentrate obtained from selective flotation contain each other severely, resulting in low recovery of lead and zinc and severe loss of metal, which influences subsequent smelting flowsheet. In addition, due to requirement of large amount of depressant and activator while separating lead and zinc in the process of mineral processing, the cost is very high and the compositions of tail water which can not be recycled by the plant are very complicated. For the combined flowsheet of beneficiation and metallurgy, bulk flotation flowsheet was adopted. Therefore, 11.22% yield of combined lead and zinc concentrate with 25.55% lead grade, 18.33% zinc grade and 86.36% lead recovery were obtained. Gravity separation technology was utilized to separate combined concentrate of lead and zinc. After selecting out part of high quality lead concentrate, the remaining combined concentrate of lead and zinc was treated by acid leaching under high pressure. The final leaching efficiency of zinc was able to reach 97%. The new combined flowsheet has lots of advantages such as shorter flowsheet of beneficiation, simpler reagents, more direct reuse of backwater and higher recovery of metals.


Sign in / Sign up

Export Citation Format

Share Document