Site-specific height growth models for six common tree species in Denmark

2009 ◽  
Vol 24 (3) ◽  
pp. 194-204 ◽  
Author(s):  
Thomas Nord-Larsen ◽  
Henrik Meilby ◽  
Jens Peter Skovsgaard
Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 429
Author(s):  
Jaime Briseño-Reyes ◽  
José Javier Corral-Rivas ◽  
Raúl Solis-Moreno ◽  
Jaime Roberto Padilla-Martínez ◽  
Daniel José Vega-Nieva ◽  
...  

Lack of knowledge of individual tree growth in species-rich, mixed forest ecosystems impedes their sustainable management. In this study, species-specific models for predicting individual diameter at breast height (dbh) and total tree height (h) growth were developed for 30 tree species growing in mixed and uneven-aged forest stands in Durango, Mexico. Growth models were also developed for all pine, all oaks, and all other species of the genus Arbutus (strawberry trees). A database of 55,158 trees with remeasurements of dbh and h of a 5-year growth period was used to develop the models. The data were collected from 217 stem-mapped plots located in the Sierra Madre Occidental (Mexico). Weighted regression was used to remove heteroscedasticity from the species-specific dbh and h growth models using a power function of the tree size independent variables. The final models developed in the present study to predict dbh and total tree height growth included size variables, site factors, and competition variables in their formulation. The developed models fitted the data well and explained between 98 and 99% and of the observed variation of dbh, and between 77 and 98% of the observed variation of total tree height for the studied species and groups of species. The developed models can be used for estimating the individual dbh and h growth for the analyzed species and can be integrated in decision support tools for management planning in these mixed forest ecosystems.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 965
Author(s):  
Sandra-Maria Hipler ◽  
Heinrich Spiecker ◽  
Shuirong Wu

In this study, we developed dynamic top height growth models for the eight important Chinese tree species Larix gmelinii var. principis-rupprechtii, Pinus tabuliformis Carr., Pinus sylvestris var. mongolica Litv., Picea asperata Mast., Quercus mongolica Fisch. ex Ledeb, Betula platyphylla Suk., Betula dahurica Pall. and Populus davidiana Dode based on age-height relationships. For this purpose, commonly growth data from long-term observations of permanent experimental plots are used, which ideally cover all development stages from stand establishment to final harvest. As such data were not available in the research area of Hebei Province in Northeast China, we used stem analysis data as well as tree height and annual shoot length measurements. The dataset consisted of 72 stands, 233 dominant trees and 10,195 observations of stem discs and annual shoot length measurements. Five dynamic base-age invariant top height growth models were derived from four base models with the Generalized Algebraic Difference Approach and fitted to our age-height data using nested regression techniques. According to biological plausibility and model accuracy the Chapman–Richards model showed the best performance for Picea asperata. This selected model accounted for 99% of the total variance in age-height relationship with average absolute bias of 0.2322 m, root mean square error of 0.3337 m and of 0.9979, respectively. The distribution of the residuals was scattered around 0 and without visible trends, indicating that the fitness of the models was good. All developed models are able to generate top height growth curves representing the analyzed height growth data and can be utilized for predicting height growth on the base of current height and age of dominant trees. Additionally, they are the base for calculating the development of other relevant stand attributes such as basal area and volume growth. The determination of potential site productivity by the use of top height growth curves is a practical and convenient method for a simplified presentation of complex growth processes in stands and helps to create growth models, which facilitate implementing sustainable forest management practices in Mulan Forest.


BMJ Open ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. e035785
Author(s):  
Shukrullah Ahmadi ◽  
Florence Bodeau-Livinec ◽  
Roméo Zoumenou ◽  
André Garcia ◽  
David Courtin ◽  
...  

ObjectiveTo select a growth model that best describes individual growth trajectories of children and to present some growth characteristics of this population.SettingsParticipants were selected from a prospective cohort conducted in three health centres (Allada, Sekou and Attogon) in a semirural region of Benin, sub-Saharan Africa.ParticipantsChildren aged 0 to 6 years were recruited in a cohort study with at least two valid height and weight measurements included (n=961).Primary and secondary outcome measuresThis study compared the goodness-of-fit of three structural growth models (Jenss-Bayley, Reed and a newly adapted version of the Gompertz growth model) on longitudinal weight and height growth data of boys and girls. The goodness-of-fit of the models was assessed using residual distribution over age and compared with the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). The best-fitting model allowed estimating mean weight and height growth trajectories, individual growth and growth velocities. Underweight, stunting and wasting were also estimated at age 6 years.ResultsThe three models were able to fit well both weight and height data. The Jenss-Bayley model presented the best fit for weight and height, both in boys and girls. Mean height growth trajectories were identical in shape and direction for boys and girls while the mean weight growth curve of girls fell slightly below the curve of boys after neonatal life. Finally, 35%, 27.7% and 8% of boys; and 34%, 38.4% and 4% of girls were estimated to be underweight, wasted and stunted at age 6 years, respectively.ConclusionThe growth parameters of the best-fitting Jenss-Bayley model can be used to describe growth trajectories and study their determinants.


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
李泽东,陈志成,曹振,车路平,刘舒文,张永涛 LI Zedong

2018 ◽  
Author(s):  
V.N. Shanin ◽  
P.Ya. Grabarnik ◽  
S.S. Bykhovets ◽  
O.G. Chertov ◽  
M.P. Shashkov ◽  
...  

2018 ◽  
Vol 45 (11) ◽  
pp. 2520-2532 ◽  
Author(s):  
Yue-Hua Hu ◽  
Daniel J. Johnson ◽  
Xiang-Cheng Mi ◽  
Xu-Gao Wang ◽  
Wan-Hui Ye ◽  
...  

2006 ◽  
Vol 82 (5) ◽  
pp. 733-744 ◽  
Author(s):  
Nicholas J Buda ◽  
Jian R Wang

Stem analyses data collected in central Ontario stands were used to develop site index (height and age) and site form (height and diameter) models and curves for sugar maple. The suitability of both methods for evaluating sugar maple site productivity was examined. Two different equation forms were evaluated for both site index and site form models. A common modification of Richard's (1959) equation was most suitable for predicting dominant height at index age (site index) and reference diameter (site form). Potential effects of species mixture on sugar maple site index were examined. We found no significant effects on sugar maple height growth and site index in mixed stand conditions common in the region when compared to pure stands. The potential of site form as an alternative to site index was investigated through correlation analyses with site index and other site variables known to influence sugar maple height growth. Site form was not related to site index, nor any site variables related to sugar maple height growth. It is therefore inadequate for evaluating sugar maple site quality. We recommend height growth models and site index curves developed in this study be used to replace those from other regions currently used in central Ontario. Key words: site index, site form, sugar maple, site quality evaluation, mixedwood, uneven-aged


2019 ◽  
Vol 10 ◽  
Author(s):  
Feifei Zhu ◽  
Luming Dai ◽  
Erik A. Hobbie ◽  
Keisuke Koba ◽  
Xueyan Liu ◽  
...  

2020 ◽  
Author(s):  
Jin-Hua Qi ◽  
Ze-Xin Fan ◽  
Pei-Li Fu ◽  
Yong-Jiang Zhang ◽  
Frank Sterck

Abstract Growth rate varies across plant species and represents an important ecological strategy for competition, resource use and fitness. However, empirical studies often show a low predictability of functional traits to tree growth. We measured stem diameter and height growth rates of 96 juvenile trees (2 to 5 m tall) of eight evergreen and eight deciduous broadleaf tree species over three consecutive years in a subtropical forest in southwestern China. We examined the relationships between tree growth rates and 20 leaf/stem traits that associated with carbon gain, stem hydraulics and nutrient use efficiency, as well as the difference between evergreen and deciduous trees. We found that cross-species variations of stem diameter/height growth rate can be predicted by leaf photosynthetic capacity, leaf mass per area, xylem theoretical specific hydraulic conductivity, wood density and photosynthetic nutrient use efficiencies. Higher leaf carbon assimilation and lower leaf/stem constructing costs facilitate deciduous species to be more resource acquisitive and consequently faster growth within a relatively shorter growing season, whereas evergreen species exhibit a more conservative strategies and thus slower growth. Further, stem growth rates of evergreen species showed were more dependence on leaf carbon gains, whereas stem hydraulic efficiency were more important for deciduous tree growth. Our results suggest that physiological traits (photosynthesis, hydraulics, nutrient use efficiency) can predict tree diameter and height growth of subtropical tree species. The differential resource acquisition and use strategies and their associations with tree growth between evergreen and deciduous trees provide insights in explaining the co-existence of evergreen and deciduous tree species in subtropical forests.


Sign in / Sign up

Export Citation Format

Share Document