Near infrared (NIR)-spectroscopy and in-vitro dissolution absorption system 2 (IDAS2) can help detect changes in the quality of generic drugs

2020 ◽  
Vol 46 (1) ◽  
pp. 80-90
Author(s):  
Carlos Jiménez-Romero ◽  
Johayra Simithy ◽  
Anthony Severdia ◽  
Daniel Álvarez ◽  
Manuel Grosso ◽  
...  
Recycling ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 11
Author(s):  
Kirsti Cura ◽  
Niko Rintala ◽  
Taina Kamppuri ◽  
Eetta Saarimäki ◽  
Pirjo Heikkilä

In order to add value to recycled textile material and to guarantee that the input material for recycling processes is of adequate quality, it is essential to be able to accurately recognise and sort items according to their material content. Therefore, there is a need for an economically viable and effective way to recognise and sort textile materials. Automated recognition and sorting lines provide a method for ensuring better quality of the fractions being recycled and thus enhance the availability of such fractions for recycling. The aim of this study was to deepen the understanding of NIR spectroscopy technology in the recognition of textile materials by studying the effects of structural fabric properties on the recognition. The identified properties of fabrics that led non-matching recognition were coating and finishing that lead different recognition of the material depending on the side facing the NIR analyser. In addition, very thin fabrics allowed NIRS to penetrate through the fabric and resulted in the non-matching recognition. Additionally, ageing was found to cause such chemical changes, especially in the spectra of cotton, that hampered the recognition.


2022 ◽  
pp. 096703352110572
Author(s):  
Nicholas T Anderson ◽  
Kerry B Walsh

Short wave near infrared (NIR) spectroscopy operated in a partial or full transmission geometry and a point spectroscopy mode has been increasingly adopted for evaluation of quality of intact fruit, both on-tree and on-packing lines. The evolution in hardware has been paralleled by an evolution in the modelling techniques employed. This review documents the range of spectral pre-treatments and modelling techniques employed for this application. Over the last three decades, there has been a shift from use of multiple linear regression to partial least squares regression. Attention to model robustness across seasons and instruments has driven a shift to machine learning methods such as artificial neural networks and deep learning in recent years, with this shift enabled by the availability of large and diverse training and test sets.


Holzforschung ◽  
2003 ◽  
Vol 57 (5) ◽  
pp. 527-532 ◽  
Author(s):  
L. R. Schimleck ◽  
Y. Yazaki

Summary The analysis of two sets of Acacia mearnsii De Wild (Black Wattle) samples by near infrared (NIR) spectroscopy is reported. Set 1 samples were characterised in terms of hot water extractives, Stiasny value and polyflavanoid content. Set 2 samples were characterised by nine different parameters, including tannin content. NIR spectra were obtained from the milled bark of all samples and calibrations developed for each parameter. Calibrations developed for hot water extractives and polyflavanoid content (set 1) gave very good coefficients of determination (R2) and performed well in prediction. Set 2 calibrations were generally good with total and soluble solids, tannin content, Stiasny value-2 and UV-2, all having R2 greater than 0.8. Owing to the small number of set 2 samples, no predictions were made using the calibrations. The strong relationships obtained for many parameters in this study indicates that NIR spectroscopy has considerable potential for the rapid assessment of the quality of extractives in A. mearnsii bark.


2018 ◽  
Vol 56 (9) ◽  
pp. 1551-1558 ◽  
Author(s):  
Tinne Monteyne ◽  
Renaat Coopman ◽  
Antoine S. Kishabongo ◽  
Jonas Himpe ◽  
Bruno Lapauw ◽  
...  

Abstract Background: Glycated keratin allows the monitoring of average tissue glucose exposure over previous weeks. In the present study, we wanted to explore if near-infrared (NIR) spectroscopy could be used as a non-invasive diagnostic tool for assessing glycation in diabetes mellitus. Methods: A total of 52 patients with diabetes mellitus and 107 healthy subjects were enrolled in this study. A limited number (n=21) of nails of healthy subjects were glycated in vitro with 0.278 mol/L, 0.556 mol/L and 0.833 mol/L glucose solution to study the effect of glucose on the nail spectrum. Consequently, the nail clippings of the patients were analyzed using a Thermo Fisher Antaris II Near-IR Analyzer Spectrometer and near infrared (NIR) chemical imaging. Spectral classification (patients with diabetes mellitus vs. healthy subjects) was performed using partial least square discriminant analysis (PLS-DA). Results: In vitro glycation resulted in peak sharpening between 4300 and 4400 cm−1 and spectral variations at 5270 cm−1 and between 6600 and 7500 cm−1. Similar regions encountered spectral deviations during analysis of the patients’ nails. Optimization of the spectral collection parameters was necessary in order to distinguish a large dataset. Spectra had to be collected at 16 cm−1, 128 scans, region 4000–7500 cm−1. Using standard normal variate, Savitsky-Golay smoothing (7 points) and first derivative preprocessing allowed for the prediction of the test set with 100% correct assignments utilizing a PLS-DA model. Conclusions: Analysis of protein glycation in human fingernail clippings with NIR spectroscopy could be an alternative affordable technique for the diagnosis of diabetes mellitus.


2021 ◽  
Author(s):  
Rakesh Kumar Kumar Raigar ◽  
Shubhangi Srivast ◽  
Hari Niwas Mishra

Abstract The possibility of rapid estimation of moisture, protein, fat, free fatty acid (FFA), and peroxide value (PV) content in peanut kernel was studied by Fourier transform near-infrared spectroscopy (FTNIR) in the diffuse reflectance mode along with chemometric technic. The moisture, fat and protein of fresh and damaged seeds of peanuts ranging from 3 to 9 %, 45 to 57 % and 23 to 27 % respectively, were used for the calibration model building based on partial least squares (PLS) regression. The peanut samples had major peaks at wavenumbers 53.0853, 4954.98, 4464.03, 4070.85, 74.75.63, 8230.21, and 6178.13 in per cm. First and second derivate mathematical preprocessing was also applied in order to eliminate multiple baselines for different chemical quality parameters of peanut. The FFA had the lowest value of calibration and validation errors (0.579 and 0.738) followed by the protein (0.736 and 0.765). The quality of peanut seeds with lowest root mean square error of cross validation of 0.76 and maximum correlation coefficient (R2) of 96.8 was obtained. The comprehensive results signify that FT-NIR spectroscopy can be used for rapid, non-destructive quantification of quality parameters in peanuts.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Ming-Zhi Zhu ◽  
Beibei Wen ◽  
Hao Wu ◽  
Juan Li ◽  
Haiyan Lin ◽  
...  

Tea is known to be one of the most popular beverages enjoyed by two-thirds of the world’s population. Concern of variability in tea quality is increasing among consumers. It is of great significance to control quality for commercialized tea products. As a rapid, noninvasive, and nondestructive instrumental technique with simplicity in sample preparation, near-infrared reflectance (NIR) spectroscopy has been proved to be one of the most advanced and efficient tools for the control quality of tea products in recent years. In this article, we review the most recent advances and applications of NIR spectroscopy and chemometrics for the quality control of tea, including the measurement of chemical compositions, the evaluation of sensory attributes, the identification of categories and varieties, and the discrimination of geographical origins. Besides, challenges and future trends of tea quality control by NIR spectroscopy are also presented.


2021 ◽  
Vol 17 ◽  
Author(s):  
Yuqing Yang ◽  
Yuling Zhong ◽  
Tingting Xie ◽  
Mengxiang Su

Background: Compound aluminum hydroxide tablets (CAHTs) are widely used in the Chinese domestic market, and strict quality control is required to ensure their clinical efficacy. Purpose: In this study, we established a comprehensive strategy of acid-neutralization, in vitro dissolution and an assay of magnesium trisilicate to evaluate the overall quality and monitor the consistency of CAHTs. Methods: The acid-neutralization profiles of 38 batches of CAHTs were generated using the dissolution and release method III (the cup method, the Chinese pharmacopeia) combined with potentiometric titration. To directly reflect the disintegration and release process of the preparation, we optimized the sample pretreatment method by omitting the grinding step to determine the profiles of complete tablets. In addition, in vitro dissolution was conducted in the hydrochloric acid medium at pH 1.0 by using the assay of magnesium trisilicate through a validated approach of flame atomic absorption spectrophotometry (FAAS) to evaluate the similarity of the dissolution profiles. Results: Acid-neutralization tests showed that the quality of the samples from manufacturers B and F was poor. In vitro dissolution experiments showed that the samples from manufacturer A had the highest similarity with the reference preparation, which indicated their good quality consistency. Besides, the optimized acid-neutralization method had the advantage of simple operation and enabled direct characterization of pharmacodynamics in the quality consistency evaluation of antacids. Conclusion: A successful synthetic evaluation strategy was established to assess the overall quality of CAHTs, which demonstrated that the improvement in the quality of this formulation is imperative.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1765 ◽  
Author(s):  
Dedy Septiadi ◽  
Laura Rodriguez-Lorenzo ◽  
Sandor Balog ◽  
Miguel Spuch-Calvar ◽  
Giovanni Spiaggia ◽  
...  

The overt hazard of carbon nanotubes (CNTs) is often assessed using in vitro methods, but determining a dose–response relationship is still a challenge due to the analytical difficulty of quantifying the dose delivered to cells. An approach to accurately quantify CNT doses for submerged in vitro adherent cell culture systems using UV-VIS-near-infrared (NIR) spectroscopy is provided here. Two types of multi-walled CNTs (MWCNTs), Mitsui-7 and Nanocyl, which are dispersed in protein rich cell culture media, are studied as tested materials. Post 48 h of CNT incubation, the cellular fractions are subjected to microwave-assisted acid digestion/oxidation treatment, which eliminates biological matrix interference and improves CNT colloidal stability. The retrieved oxidized CNTs are analyzed and quantified using UV-VIS-NIR spectroscopy. In vitro imaging and quantification data in the presence of human lung epithelial cells (A549) confirm that up to 85% of Mitsui-7 and 48% for Nanocyl sediment interact (either through internalization or adherence) with cells during the 48 h of incubation. This finding is further confirmed using a sedimentation approach to estimate the delivered dose by measuring the depletion profile of the CNTs.


Sign in / Sign up

Export Citation Format

Share Document