Sewage treatment by activated sludge Bacteria

1966 ◽  
Vol 16 (2) ◽  
pp. 911-914
Author(s):  
Zofia Kanska
2020 ◽  
Vol 36 (2) ◽  
pp. 86-98
Author(s):  
A.A. Sergeeva ◽  
G.V. Ovechkina ◽  
A.Yu. Maksimov

Bacterial strains capable of degradation of 0.8-15.8 g/1 pyridine hydrochloride have been isolated from activated sludge of municipal biological treatment plants in Perm (BOS) and local treatment facilities of the LUKOIL-Permnefteorgsintez enterprise (PNOS). The strains were identified as Achromobacter pulmonis and Burkholderia dolosa. The optimal pyridine concentration for the growth of the isolated strains was 4.0 g/1. The pyridine degradation during the A. pulmonis PNOS and B. dolosa BOS cultivation on a medium with ammonium chloride and glucose and without additional nitrogen or carbon sources was studied. It was shown that the strains are able to accumulate biomass in a medium with pyridine as the sole carbon and nitrogen source; the addition of glucose to the medium (1 g/L) accelerated the pyridine degradation by A. pulmonis PNOS, but inhibited the process carried out by B. dolosa BOS. B. dolosa BOS and A. pulmonis PNOS biofilms efficiently utilized pyridine during growth on basalt and carbon fibers; the highest rate of pyridine utilization (1.8 g /(L day)) was observed in A. pulmonis PNOS biofilms on basalt fibers. pyridine, biodegradation, activated sludge, biofilms, Achromobacter pulmonis, Burkholderia dolosa The authors grateful to Dr. I.I. Tchaikovsky, Head of the Laboratory of Geology of Mineral Deposits of the Mining Institute, a branch of the Perm Federal Research Center, for help with electron microscopy of the samples. This work was carried out as part of a state assignment on the topic « Study of the Functional and Species Diversity of Microorganisms Useful for Ecocenoses and Human Practical Activity», registration number R&D AAAA-A19-119112290008-4.


1974 ◽  
Vol 9 (1) ◽  
pp. 250-261
Author(s):  
D.F. Carr ◽  
J. Ganczarczyk

Abstract Activated sludge samples from two Toronto sewage treatment plants were subjected to the extraction of exocellular material by means of 9 different methods suggested for this purpose. Some of those methods, originally developed for pure bacterial cultures, were modified for the application to activated sludge. The amount of exocellular material obtained varied for Lakeview sludges from 0.4 to 3.2% of their dry volatile solids, and for Humber sludges from 0.3 to 5.3%. It has been found that extractions by the use of sulphuric acid, high-speed centrifugation and sodium hydroxide, were not suitable for the studied material. Especially surprising was the ineffectiveness of high-speed centrifugation to yield any measurable amounts of extract. The boiling water extraction is recommended for further studies on activated sludge exocellular material. The material extracted from activated sludge is very complex in nature. Generally more polysaccharide than protein was extracted, but the remaining volatile material may form up to 70% of the dry weight.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 113-121
Author(s):  
W. Maier

In view of the new effluent standards in West Germany, including nitrification and phosphorus elimination, many of the existing sewage treatment plants will have to be rebuilt or expanded. Another demand which will have to be dealt with in the near future is denitrification. Under consideration of the large BOD5-loads which were taken into account when designing the plants, many of them nitrify during the summer or can be easily converted to operate with nitrification. Principles for planning the upgrading of such plants have been laid down in order to achieve the required effluent concentrations. The application of these principles is demonstrated with examples of upgraded plants.


1987 ◽  
Vol 19 (3-4) ◽  
pp. 449-460 ◽  
Author(s):  
W. Giger ◽  
M. Ahel ◽  
M. Koch ◽  
H. U. Laubscher ◽  
C. Schaffner ◽  
...  

Effluents and sludges from several municipal sewage treatment plants in Switzerland were analyzed for nonylphenol polyethoxylates (NPnEO, n=3-20), nonylphenol mono- and diethoxylate (NPlEO, NP2EO), corresponding nonylphenoxy carboxylic acids (NP1EC, NP2EC) and nonylphenol (NP). These chemicals derive from nonionic surfactants of the NPnEO-type, and specific analitical techniques were used to study their behaviour during mechanical-biological sewage and subsequent sludge treatment. The parent NPnEO-surfactants, with concentrations in raw and mechanically treated sewage from 400-2200 mg/m3, were relatively efficiently removed by the activated sludge treatment. The abundances of the different metabolites varied depending on treatment conditions. The refractory nature of NPl/2EO, NP and NPl/2EC was recognized. Both biotransformations and physico-chemical processes determine the behaviour and fate of nonylphenolic substances in sewage treatment. Nitrilotriacetate (NTA) was found in primary effluents at concentrations between 430 and 1390 mg/m3. The various treatment plants showed different removal efficiencies for NTA depending on the operating conditions. Activated sludge treatment with low sludge loading rates and nitrifying conditions removed NTA with efficiencies between 95 and 99%. High sludge loading caused a decrease in NTA removal efficiencies from 70% to 39%.


1994 ◽  
Vol 30 (6) ◽  
pp. 31-40 ◽  
Author(s):  
Hiroyshi Emori ◽  
Hiroki Nakamura ◽  
Tatsuo Sumino ◽  
Tadashi Takeshima ◽  
Katsuzo Motegi ◽  
...  

For the sewage treatment plants near rivers and closed water bodies in urbanized areas in Japan and European countries, there is a growing demand for introduction of advanced treatment processes for nitrogen and phosphorus from the viewpoints of water quality conservation and environmental protection. In order to remove nitrogen by the conventional biological treatment techniques, it is necessary to make a substantial expansion of the facility as compared with the conventional activated sludge process. In such urbanized districts, it is difficult to secure a site and much capital is required to expand the existing treatment plant. To solve these problems, a compact single sludge pre-denitrification process using immobilized nitrifiers was developed. Dosing the pellets, which are suitable for nitrifiers growth and physically durable, into the nitrification tank of single sludge pre-denitrification process made it possible to perform simultaneous removal of BOD and nitrogen in a retention time equal to that in the conventional activated sludge process even at the low water temperature of about 10 °C. The 3,000 m3/d full-scale conventional activated sludge plant was retrofitted and has been successfully operated.


PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0131532 ◽  
Author(s):  
Magna C. Paiva ◽  
Marcelo P. Ávila ◽  
Mariana P. Reis ◽  
Patrícia S. Costa ◽  
Regina M. D. Nardi ◽  
...  

Chemosphere ◽  
1999 ◽  
Vol 38 (15) ◽  
pp. 3555-3570 ◽  
Author(s):  
U.J. Strotmann ◽  
A. Geldem ◽  
A. Kuhn ◽  
C. Gendig ◽  
S. Klein

RSC Advances ◽  
2017 ◽  
Vol 7 (66) ◽  
pp. 41727-41737 ◽  
Author(s):  
Hebin Liang ◽  
Dongdong Ye ◽  
Lixin Luo

Activated sludge is essential for the biological wastewater treatment process and the identification of active microbes enlarges awareness of their ecological functions in this system.


Sign in / Sign up

Export Citation Format

Share Document