Behaviour of Alkylphenol Polyethoxylate Surfactants and of Nitrilotriacetate in Sewage Treatment

1987 ◽  
Vol 19 (3-4) ◽  
pp. 449-460 ◽  
Author(s):  
W. Giger ◽  
M. Ahel ◽  
M. Koch ◽  
H. U. Laubscher ◽  
C. Schaffner ◽  
...  

Effluents and sludges from several municipal sewage treatment plants in Switzerland were analyzed for nonylphenol polyethoxylates (NPnEO, n=3-20), nonylphenol mono- and diethoxylate (NPlEO, NP2EO), corresponding nonylphenoxy carboxylic acids (NP1EC, NP2EC) and nonylphenol (NP). These chemicals derive from nonionic surfactants of the NPnEO-type, and specific analitical techniques were used to study their behaviour during mechanical-biological sewage and subsequent sludge treatment. The parent NPnEO-surfactants, with concentrations in raw and mechanically treated sewage from 400-2200 mg/m3, were relatively efficiently removed by the activated sludge treatment. The abundances of the different metabolites varied depending on treatment conditions. The refractory nature of NPl/2EO, NP and NPl/2EC was recognized. Both biotransformations and physico-chemical processes determine the behaviour and fate of nonylphenolic substances in sewage treatment. Nitrilotriacetate (NTA) was found in primary effluents at concentrations between 430 and 1390 mg/m3. The various treatment plants showed different removal efficiencies for NTA depending on the operating conditions. Activated sludge treatment with low sludge loading rates and nitrifying conditions removed NTA with efficiencies between 95 and 99%. High sludge loading caused a decrease in NTA removal efficiencies from 70% to 39%.

1990 ◽  
Vol 22 (9) ◽  
pp. 199-206
Author(s):  
J. Junna ◽  
J. Rintala

Since 1984, when the first activated sludge treatment plant (ASTP) was built to treat pulp and paper industry wastewaters in Finland, twenty more plants have been introduced by 1989. An evaluation was undertaken to find out the actual performance of the ASTPs in BOD7, CODc r and phosphorus removal. The evaluation included all the 12 ASTPs in operation in the pulp and paper industry at the beginning of 1987. The highest average BOD7 removals were about 90 % at pulp mills as well as paper and board mills. CODc r removal was generally higher at paper and board mills (about 40-70 %) than at pulp mills (about 25-55 %). Phosphorus was added to wastewater in most plants. In some ASTPs, phosphorus concentrations were lowered by 20-40 % compared with wastewater from the mill. In some plants phosphorus load on the recipient was higher than the load coming from the mill. In treated wastewater, correlations between suspended solids and BOD7, CODc r, phosphorus and nitrogen were significant in most plants. This indicated that low removal efficiencies resulted from poor suspended solids removal in the secondary clarification. Volumetric and sludge CODc r loading rates could not explain removal efficiencies when all plants were included in the comparison. In plants treating chemical pulping effluents, higher removal efficiencies were normally achieved with lower loading rates. When the plants were studied separately, the influence of loading rate was generally significant.


1994 ◽  
Vol 29 (5-6) ◽  
pp. 177-187 ◽  
Author(s):  
E. R. Hall ◽  
W. G. Randle

Laboratory-scale activated sludge (AS), facultative stabilization basin (FSB) and aerated stabilization basin (ASB) processes were operated in parallel treating bleached kraft mill effluent under controlled SRT and temperature conditions, to assess the chlorinated phenolics removal efficiencies attainable in each. The structure and extent of chlorination of the chlorophenolic compounds monitored appeared to contribute to the differing removal efficiencies observed. Under most operating conditions, treatment process effluents contained chronically toxic levels of pentachlorophenol-equivalent toxicity (TEQ). A companson of the results obtained from the FSB, ASB and AS processes indicated that, under most operating conditions, chlorophenolics removal in low rate treatment systems is superior to that in a higher rate activated sludge treatment process. However, it was also observed that operation at long SRT and moderate temperature permitted enhanced removal of chlorophenolics and reduced TEQs to less than threshold values, in all three treatment processes.


1979 ◽  
Vol 82 (2) ◽  
pp. 285-291 ◽  
Author(s):  
S. A. Balluz ◽  
M. Butler

SUMMARYThe behaviour of f2 coliphage during activated-sludge treatment was influenced by the temperature, flow-through-time, concentration of mixed liquor suspended solids and the virus load.The most sensitive way to detect behavioural changes was to examine the regression coefficients for the rate of uptake or loss of virus by the mixed liquor solids. This type of analysis revealed, for instance, high values when the solids concentration was high and even greater values occured when high inocula were used. At high temperature the rate of loss of virus titre after inoculation had stopped was greater than the rate of uptake of virus during inoculation although in all other conditions uptake occurred at a greater rate than the loss of virus. The coefficients were relatively low when the flow rate was increased, when the temperature was low or when the inoculum was small.The distribution of virus between the solids and liquid fractions of the mixed liquor varied somewhat for all conditions but was notably different when (a) the plant was incubated at 5 °C when there was much less virus in the solids fraction than usual, and (b) when the inoculum was low and a much higher proportion of virus was found in the solids.The efficiency with which virus was removed across the plant was the least-sensitive determinant of viral behaviour and the value was about the same for most treatment conditions. However, low or high inocula did result in some increased or decreased removal of virus, respectively.


2001 ◽  
Vol 44 (2-3) ◽  
pp. 359-365 ◽  
Author(s):  
D. Geenens ◽  
B. Bixio ◽  
C. Thoeye

Biological treatment is widely preferred by many landfill owners to remove the bulk of the pollutants in leachate. Specific problems due to toxicity and nutrient deficiencies are however frequently reported. This study investigates the possibility of pre-treating leachate to decrease its toxicity and increase its biodegradability, using ozonation. Lab-scale and pilot testing has shown that nitrification toxicity was minimised by ozone pre-treatment. A decrease of the COD/BOD-ratio from 16 to 6 was achieved, making the pre-treated leachate co-treatable in municipal sewage treatment. The operational cost for the pre-treatment was estimated at 1.34 Euro/kg COD.


2002 ◽  
Vol 46 (10) ◽  
pp. 173-179 ◽  
Author(s):  
S. Tanaka ◽  
K. Kamiyama

Effects of a thermochemical pretreatment on the anaerobic digestion of waste activated sludge (WAS) was investigated by semicontinuously-fed digesters operated at 37¡C. WAS from a return sludge line of a municipal sewage treatment plant was pretreated by autoclaving at 130°C for 5 minutes after adding 0.3g NaOH/g VSS. Solids of WAS were thermochemically solubilized to one half and then 60% or more were in totality solubilized in anaerobic digesters fed with pretreated WAS at 2-8 days of hydraulic retention times (HRT), while only 16-36% were solubilized in digesters fed with raw WAS. The adverse effect of the set temperature (130°C) on the biodegradability of protein was not found. As a result, removal rates of COD in digestion was increased from 38% to 57% at 8 days HRT by the pretreatment. A specific methane production rate in the pretreated process was three times as high as the normal process. The thermochemical pretreatment was found to be very effective to enhance biodegradability as well as solubilization of WAS in anaerobic digestion.


2001 ◽  
Vol 43 (1) ◽  
pp. 321-326 ◽  
Author(s):  
H. A. Al-Sharekh ◽  
M. F. Hamoda

This paper summarizes the results obtained using the hybrid aerated submerged fixed-film (HASFF) process. HASFF is an innovative system comprising a four-compartment reactor having an array of fixed ceramic plates maintained under diffused aeration to support attached biomass, with activated sludge recycle to promote suspended growth in the reactor. Wastewater from a municipal treatment plant was fed to the reactor and its activated sludge was used for recycling in the hybrid system. Four pilot units were operated in the plant at various hydraulic retention times, HRTs (2, 4, 6 and 8 h), using primary-settled wastewater under organic loading rates up to 0.7 g BOD/gMLTVS · d. Data obtained showed that the overall BOD percentage removal efficiencies were consistently above 94.0% at all HRTs including the 2 hours while the COD percentage removal efficiencies ranged between 65.7–76%. The effluent's mean filtered BOD concentration ranged between 4.5–7.5 mg/l whereas the mean filtered COD concentration ranged between 70.0–89.6 mg/l. Increasing the hydraulic loading rate by four-folds from 0.08 to 0.32 m3/m2 · d had a minor effect on the unit's BOD and COD percentage removal efficiencies indicating a robust biological process that is resilient to hydraulic shock loads, thereby offering a viable upgrading option.


2002 ◽  
Vol 46 (9) ◽  
pp. 309-314
Author(s):  
S. Tanaka ◽  
A. Suzuki

The anoxic-aerobic recirculated filter (AARF) process was investigated on removal effciencies of organics and nitrogen with regard to loading rates, recirculation ratios of nitrified liquor and contribution of methane production and sulfate reduction in the treatment of the municipal sewage. The AARF process is composed of an anoxic filter for denitrification and an aerobic filter for nitrification and some of the nitrified liquor in the aerobic filter is recirculated to the anoxic filter. The AARF process successfully removed organics and nitrogen achieving high removal rates of 88% for COD and 64-74% for nitrogen. The recirculation ratio (Re) did not affect the COD removal efficiency but did affect the nitrogen removal, which was enhanced at a higher ratio (Re = 4). The methane production was not contributive to the COD removal but the COD consumed by the sulfate reduction was equivalent to 17% of total COD removed at Re = 2. We confirmed that the AARF process was applicable to the sewage treatment including nitrogen removal at a hydraulic retention time close to that of the conventional activated sludge process.


2012 ◽  
Vol 178-181 ◽  
pp. 633-636 ◽  
Author(s):  
Feng Chen ◽  
Xiu Lian Zhu ◽  
Wei Yu

Municipalsludge is refers to the product of sewage treatment plant, facing the huge number of municipalsludge, the disposal of the municipalsludge has aroused wide attention of all countries. Many studies consider that urban land use of the municipalsludge is the most effective method, However heavy metal accumulats in the sludge and the environment of the risk with agricultural appears day after day.The purpose of this study is: analysis the transfermation of heavy metals in the activated sludge system of various structures. put forward the solution of reducing heavy metal exceeded in the activated sludge treatment process.It appears that the coagulation can make colloid stabilized and sedimentation, can control the input of the heavy metal effectively; Adsorption of activated sludge to heavy metal is very fast, in 30 min basic reached adsorption balance, probably 80% or more;The change from oxygen to aerobic have great influence on Heavy metal biological adsorption;An aerobic digestion processes can reduce the volume and quality of sludge, but there is no enrichment role to heavy metal in sludge.


Sign in / Sign up

Export Citation Format

Share Document