Field Measurement of Vertical Distribution of Wind Speed with Moving Sand on a Beach

1986 ◽  
Vol 29 (1) ◽  
pp. 163-178 ◽  
Author(s):  
Kiyoshi Horikawa ◽  
Shintaro Hotta ◽  
Susumu Kubota
2016 ◽  
Vol 2016 ◽  
pp. 1-15
Author(s):  
Sium Gebremariam ◽  
Belay Demoz ◽  
Churchill Okonkwo ◽  
Ricardo K. Sakai

The performance of twenty GCMs that participated in the Coupled Model Intercomparison Phase 5 (CMIP5) is evaluated at Sterling, Virginia, by comparing model outputs with radiosonde observational dataset and reanalysis dataset. We evaluated CMIP5 models in their ability to simulate wind climatology, seasonal cycle, interannual variability, and trends at the pressure levels from 850 hPa to 30 hPa. We also addressed the question of the number of years required to detect statistically significant wind trends using radiosonde wind measurements. Our results show that CMIP5 models and reanalysis successfully reproduced the observed climatological annual mean zonal wind and wind speed vertical distribution. They also capture the observed seasonal zonal, meridional, and wind speed vertical distribution with stronger (weaker) wind during the winter (summer) season. However, there is some disagreement in the magnitude of vertical profiles among CMIP5 models, reanalysis, and radiosonde observation. Overall, the number of years to obtain statistically significant trend decreases with increasing pressure level except for upper troposphere. Although the vertical profile of interannual variability of CMIP5 models and reanalysis agree with the radiosonde observation, the wind trend is not statistically significant. This indicates that detection of trends on local scale is challenging because of small signal-to-noise ratio problems.


2015 ◽  
Vol 20 (5) ◽  
pp. 701-718 ◽  
Author(s):  
Hao Wang ◽  
Tianyou Tao ◽  
Teng Wu ◽  
Jianxiao Mao ◽  
Aiqun Li

Author(s):  
Rahmayanti Rahmayanti

The use of air conditioning energy (AC) as an effort to remove heat in buildings reaches 30% of the total energy needed in the building. To reduce the use of energy in buildings by using natural ventilation because the system does not use mechanics. Field research has been carried out with the result that the openings at Balai Padang are unable to make occupants' comfort. Therefore, the existing openings will be given treatment by wider the existing openings which are 20%, 30%, and 40%. This study purpose to investigate the effect of WWR on histologic comfort. The numerical methodology is based on the solution of the Navier-Stokes equations, using K-epsilon RNG. Numerical results are validated with available field measurement data. The results obtained that by increasing the percentage of openings, the wind speed is also highPenggunaan energi air conditioning (AC) sebagai upaya penghapus panas di dalam bangunan mencapai 30% dari total energi yang dibutuhkan di dalam bangunan. Upaya yang dilakukan untuk mengurangi penggunaan energi di dalam bangunan yakni dengan menggunakan penghawaan alami sebagai penghapus panas karena sistemnya yang tidak menggunakan mekanis. Penelitian lapangan telah dilakukan dengan hasil bahwa bukaan yang ada di Balai Padang tidak mampu mencukupi kebutuhan kecepatan angin yang diperlukan untuk mendinginkan fisiologis penghuni. Oleh karena itu, bukaan yang ada akan diberikan perlakuan dengan memperbesar bukaan yang ada yakni 20%, 30% dan 40%. Penelitian ini bertujuan untuk mengetahui efek dari WWR terhadap kenyamanan fisiologis penghuni.  Metode yang digunakan adalah eksperimental dengan menggunakan bantuan software CFD (computational Fluid Dimension) berdasarkan persamaan Navier-Stoke, menggunakan K-Epsilon RNG. Eksperimen dilakukan dengan validasi hasil pengukuran lapangan. Hasil yang didapatkan bahwa dengan menambah prosentase bukaan, kecepatan angin juga semakin besar.


2014 ◽  
Vol 521 ◽  
pp. 113-116
Author(s):  
Hong Xin Sun ◽  
Tao Yu ◽  
Xiu Yong Wang

It is seriously different about characteristics of the mean wind speed between a deep gorge and plains, because of the deck of Aizhai bride to deep gorge bottom up to 335m. Characteristics of the mean wind speed in the deep gorge at the Aizhai bridge site are investigated based on field measurement using three 2D anemometers. The plan of field measurement was induced, and the wind speed, fluctuating wind speed and the 10min average wind speed with 10 days as a unit was analyzed. It if found that wind direction is basically consistent with the gorge toward. Based on the Wind-Resistant Design code, the surface roughness coefficients was fitted about 0.29, and very close to D class of the wind code.


Author(s):  
J. B. Babaan ◽  
J. P. Ballori ◽  
A. M. Tamondong ◽  
R. V. Ramos ◽  
P. M. Ostrea

<p><strong>Abstract.</strong> As the unmanned aerial vehicle (UAV) technology has gained popularity over the years, it has been introduced for air quality monitoring. This study demonstrates the feasibility of customized UAV with mobile monitoring devices as an effective, flexible, and alternative means to collect three-dimensional air pollutant concentration data. This also shows the vertical distribution of PM concentration and the relationship between the PM<sub>2.5</sub> vertical distribution and the meteorological parameters within 500<span class="thinspace"></span>m altitude on a single flight in UP Diliman, Quezon City. Measurement and mapping of the vertical distribution of particulate matter (PM)<sub>2.5</sub> concentration is demonstrated in this research using integrated air quality sensors and customized Unmanned Aerial Vehicle. The flight covers an area with a radius of 80 meters, following a cylindrical path with 40-meter interval vertically. The PM<sub>2.5</sub> concentration values are analyzed relative to the meteorological parameters including air speed, pressure, temperature, and relative humidity up to a 500<span class="thinspace"></span>meter-flying height in a single flight in Barangay UP Campus, UP Diliman, Quezon City. The study shows that generally, the PM<sub>2.5</sub> concentration decreases as the height increases with an exception in the 200&amp;ndash;280<span class="thinspace"></span>m above ground height interval due to a sudden change of atmospheric conditions at the time of the flight. Using correlation and regression analysis, the statistics shows that PM<sub>2.5</sub> concentration has a positive relationship with temperature and a negative relationship with relative humidity and wind speed. As relative humidity and wind speed increases, PM<sub>2.5</sub> decreases, while as temperature increases, PM<sub>2.5</sub> also increases.</p>


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 493
Author(s):  
Jiaxing Hu ◽  
Zhengnong Li ◽  
Zhefei Zhao

The field measurement of wind-induced response is of great significance to the wind resistance design of high-rise buildings, in particular torsional responses measured from high-rise buildings under typhoons. The measured high-rise building, with a height of 108 m, has 32 stories and is supported by giant trusses with four massive columns. Acceleration responses along translational and torsional directions were monitored synchronously and continuously during the passage of Typhoon Sarika on 18 October 2016. The wind speed and wind direction at the height of 115 m, the translational accelerations on a total of six floors and the angular accelerations on a total of four floors were recorded. The time and frequency domain characteristics of translational acceleration and torsional angular accelerations were analyzed. The amplitude-dependent translational and torsional modal frequencies of the measured building were identified by NExT-ERA, SSI, and RDT methods. The full-scale study is expected to provide useful information on the wind-resistant design of high-rise buildings in typhoon-prone regions.


2010 ◽  
Vol 407 (4) ◽  
pp. 2230-2240 ◽  
Author(s):  
S. Hagelin ◽  
E. Masciadri ◽  
F. Lascaux

Sign in / Sign up

Export Citation Format

Share Document