scholarly journals PHYTOPLANKTON-NUTRIENT RELATIONSHIPS IN SOUTH CAROLINA RESERVOIRS: IMPLICATIONS FOR MANAGEMENT STRATEGIES

1984 ◽  
Vol 1 (1) ◽  
pp. 193-197 ◽  
Author(s):  
Jeffrey Pearse
Plant Disease ◽  
2019 ◽  
Vol 103 (4) ◽  
pp. 705-710 ◽  
Author(s):  
Martha H. Froelich ◽  
Guido Schnabel

A survey of fungal pathogens causing twig blight on commercial peach trees was conducted in South Carolina in the fall of 2016. Shoots with cankers, pycnidia, and dieback were collected from six locations around the state. Isolates obtained from these samples were identified as Botryosphaeria obtusa, Phomopsis amygdali, Leucostoma persoonii, and Cytospora sp., based on colony morphology, conidia size and shape, and ribosomal DNA sequence analysis. L. persoonii was the most prevalent species and was isolated in five of the six locations, followed by P. amygdali and B. obtusa. The sensitivity of representative isolates of B. obtusa, P. amygdali, and L. persoonii to fungicides of different FRAC codes was evaluated. All species tested were sensitive to thiophanate-methyl (FRAC 1) and pyraclostrobin and azoxystrobin (both FRAC 11), whereas all species were resistant to boscalid and fluopyram (both FRAC 7). P. amygdali and B. obtusa were sensitive to difenoconazole and propiconazole (both FRAC 3), whereas L. persoonii was moderately resistant. L. persoonii was the most virulent species based on expansion of mycelium in the cambium layer of 2-year-old, detached twig pieces. Bacterial spot (BS)-sensitive cultivar ‘O’Henry’ was most susceptible to B. obtusa compared with BS-sensitive ‘Summerprince’, brown rot (BR)-resistant ‘Contender’, and BR-sensitive ‘Coronet’ but was least susceptible to L. persoonii. Coronet was most susceptible to L. persoonii. There were no significant differences between susceptibility of the cultivars to P. amygdali. This study established that L. persoonii is currently the most frequent twig blight pathogen in South Carolina, perhaps owing to its superior fitness. Some fungicides were effective in controlling all twig blight pathogens and may therefore be useful for chemical management strategies. Our study also provides the first evidence that the genetic basis of resistance to BS and BR in peach trees is not necessarily linked to tolerance to wood pathogens.


Plant Disease ◽  
2021 ◽  
Author(s):  
María Julia Carbone ◽  
Victoria Moreira ◽  
Pedro Mondino ◽  
Sandra Alaniz

Peach (Prunus persica L.) is an economically important deciduous fruit crop in Uruguay. Anthracnose caused by species of the genus Colletotrichum is one of the major diseases in peach production, originating significant yield losses in United States (Hu et al. 2015), China (Du et al. 2017), Korea (Lee et al. 2018) and Brazil (Moreira et al. 2020). In February 2017, mature peach fruits cv. Pavia Canario with symptoms resembling anthracnose disease were collected from a commercial orchard located in Rincon del Colorado, Canelones, in the Southern region of Uruguay. Symptoms on peach fruit surface were characterized as circular, sunken, brown to dark-brown lesions ranging from 1 to 5 cm in diameter. Lesions were firm to touch with wrinkled concentric rings. All lesions progressed to the fruit core in a V-shaped pattern. The centers of the lesions were covered by orange conidial masses. Monosporic isolates obtained from the advancing margin of anthracnose lesions were grown on PDA at 25ºC and 12h photoperiod under fluorescent light. The representative isolates DzC1, DzC2 and DzC6 were morphologically and molecularly characterized. Upper surface of colonies varied from white or pale-gray to gray and on the reverse dark-gray with white to pale-gray margins. Conidia were cylindrical, with both ends predominantly rounded or one slightly acute, hyaline and aseptate. The length and width of conidia ranged from 9.5 to 18.9 µm (x ̅=14.1) and from 3.8 to 5.8 µm (x ̅=4.6), respectively. The ACT, βTUB2, GAPDH, APN2, APN2/MAT-IGS, and GAP2-IGS gene regions were amplified and sequenced with primers ACT-512F/ACT-783R (Carbone and Kohn, 1999), BT2Fd/BT4R (Woudenberg et al. 2009), GDF1/GDR1 (Guerber et al. 2003), CgDLR1/ColDLF3, CgDLF6/CgMAT1F2 (Rojas et al. 2010) and GAP1041/GAP-IGS2044 (Vieira et al. 2017) respectively and deposited in the GenBank database (MZ097888 to MZ097905). Multilocus phylogenetic analysis revealed that Uruguayan isolates clustered in a separate and well supported clade with sequences of the ex-type (isolate ICMP 18578) and other C. siamense strains (isolates Coll6, 1092, LF139 and CMM 4248). To confirm pathogenicity, mature and apparently healthy peach fruit cv. Pavia Canario were inoculated with the three representative isolates of C. siamense (six fruit per isolate). Fruit were surface disinfested with 70% ethanol and wounded with a sterile needle at two equidistant points (1 mm diameter x 1 mm deep). Then, fruit were inoculated with 5 µl of a spore suspension (1×106 conidia mL-1) in four inoculation points per fruit (two wounded and two unwounded). Six fruit mock-inoculated with 5 µl sterile water were used as controls. Inoculated fruit were placed in moist chamber and incubated at 25°C during 10 days. Anthracnose lesions appeared at 2 and 4 days after inoculation in wounded and unwounded points, respectively. After 7 days, disease incidence was 100% and 67% for wounded and unwounded fruit, respectively. The control treatment remained symptomless. The pathogens were re-isolated from all lesions and re-identified as C. siamense. C. siamense was previously reported in South Carolina causing anthracnose on peach (Hu et al. 2015). To our knowledge, this is the first report of anthracnose disease on peach caused by C. siamense in Uruguay. Effective management strategies should be implemented to control anthracnose and prevent the spread of this disease to other commercial peach orchards.


2006 ◽  
Vol 7 (1) ◽  
pp. 30 ◽  
Author(s):  
Guido Schnabel ◽  
Wenxuan Chai ◽  
Kerik D. Cox

Summer diseases can cause significant yield losses in processing peach varieties, such as the ‘Babygold’ lines. In this study we identified and characterized the pathogens responsible for disease outbreaks in two orchards (PH and JC) located in the northern ‘Piedmont’ area of South Carolina. Three pathogens, Geotrichum candidum, Colletotrichum acutatum, and Botryosphaeria dothidea, the causal agents of sour rot, anthracnose, and Botryosphaeria fruit rot disease respectively, were identified on fruit from orchard PH using symptomology, culture and spore morphology, and ribosomal DNA analysis. G. candidum and C. acutatum were also isolated from symptomatic fruit from orchard JC. The QoI fungicide azoxystrobin and a mixture of pyraclostrobin and boscalid were evaluated for their in vitro efficacy against five isolates of each of the three pathogens to investigate their possible usefulness in designing management strategies. Azoxystrobin inhibited mycelial growth of C. acutatum isolates (EC50 values of 0.01 to 0.55 mg/liter) but was ineffective against mycelium of G. candidum and B. dothidea isolates (EC50 values >300 mg/liter). The pyraclostrobin-boscalid mixture was highly effective against mycelium of C. acutatum (EC50 values of 0.01 to 0.05 mg/liter) and B. dothidea isolates (EC50 values of 0.02 to 0.03 mg/liter), but only marginally effective against mycelium of G. candidum (EC50 values 15.79 to 39.03 mg/liter). This study provides a diagnostic guide of pathogens that can cause summer diseases on ‘Babygold’ peaches and reports their in vitro sensitivity to registered respiration inhibitor fungicides. Accepted for publication 23 December 2005. Published 1 March 2006.


HortScience ◽  
2000 ◽  
Vol 35 (4) ◽  
pp. 552D-552c
Author(s):  
E.B. Poling

Working on the basic idea that the small fruit industries in Virginia, South Carolina, Georgia, Arkansas, and other states in the south have a great deal of growth potential, especially in strawberries, the Southern Region Small Fruit Center is now becoming a very focused collaboration between several land-grant institutions to develop a virtual small fruit center web site that will serve to keep specialists, agents, growers, and students well informed on the latest small fruit research and technical findings. It would also give instant access to a variety of small fruit extension publications, budgets, and crop advisories. The site, www.smallfruits.org, opened on 17 Sept. 1999, and was immediately utilized after Hurricane Floyd “hit” to post a series of berry info advisories on specific postplant management strategies to minimize further yield losses due to the extra week of delayed planting caused by Floyd's flooding. The main benefit of regional or multistate institutional approach is that it gives us the “extra horsepower” for tackling some fairly ambitious projects, like the creation of a virtual small fruit center. Recently, the center has begun to offer more in-depth regional training courses for agents and growers, such as the “Extension Strawberry Plasticulture” short course that was conducted on North Carolina State Centennial Campus, 1-5 Nov. 1999. We currently have a “critical mass” of some of the best small fruit research and extension workers you will find anywhere across the whole southern region, and by working together we can develop stronger, more economically viable small fruit industries.


Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1063-1068 ◽  
Author(s):  
F. Chen ◽  
X. Liu ◽  
G. Schnabel

In 2012, significant brown rot disease was observed on stone fruit in Pennsylvania, Maryland, and South Carolina despite preharvest application of methyl benzimidazole carbamate (MBC) and demethylase inhibitor (DMI) fungicides. In total, 140 Monilinia fructicola isolates were collected from diseased orchards and examined for fungicide sensitivity. In addition to isolates resistant to either the DMI propiconazole or the MBC thiophanate-methyl, 22 isolates were discovered that were resistant to both fungicides, including 4 isolates from peach in South Carolina, 12 isolates from peach and sweet cherry in Maryland, and 6 isolates from sweet cherry in Pennsylvania. Analysis of MBC resistance revealed that dual-resistant isolates from South Carolina carried the β-tubulin E198A mutation, whereas isolates from Maryland and Pennsylvania carried E198 mutations not previously described in the Monilinia genus, E198Q or F200Y. The genetic element Mona, associated with DMI fungicide resistance in M. fructicola, was detected in the dual-resistant isolates from South Carolina but not in the isolates from the two more northern states. An investigation into the molecular mechanism of DMI resistance in the latter isolates revealed that resistance was not based on increased expression or mutation of MfCYP51, which encodes the target of DMI fungicides. Label rates of formulated propiconazole or thiophanate-methyl were unable to control dual-resistant isolates on detached peach fruit, confirming field relevance of dual resistance. The same isolates were not affected by fitness penalties based on mycelial growth rate, ability to sporulate, and virulence on detached peach fruit. The emergence of M. fructicola strains resistant to both DMI and MBC fungicides in multiple states and multiple stone fruit crops is a significant development and needs to be considered when designing resistance management strategies in stone fruit orchards.


2021 ◽  
pp. 80-86
Author(s):  
John Mueller

Abstract This paper focuses on the economic importance, host range, geographical distribution, damage symptoms and biology and life cycle of Hoplolaimus columbusinfesting cotton and soyabean in South Carolina, USA. Information on this pest to other nematodes and pathogens, the efficacy and optimization of some recommended integrated nematode management strategies and future outlook and research requirements in nematode control are also presented.


2020 ◽  
Vol 113 (2) ◽  
pp. 814-823
Author(s):  
Tom R Bilbo ◽  
Francis P F Reay-Jones ◽  
Jeremy K Greene

Abstract The fall armyworm, Spodoptera frugiperda (J. E. Smith), is a major pest of corn in North and South America. It is managed primarily with transgenic corn-producing insecticidal proteins of Bacillus thuringiensis (Bt), but the development of resistance threatens their durability and necessitates the use of alternative management strategies. We conducted late-planted field trials during 2016 and 2017 in South Carolina using natural infestations. We evaluated the use of Bt and non-Bt corn hybrids in combination with foliar applications of chlorantraniliprole at varying infestation thresholds to protect field corn from infestation and damage and determine effects on grain yield. All Bt hybrids were more effective at reducing fall armyworm infestation rates and leaf injury than multiple insecticide sprays, and no Bt hybrid reached the lowest infestation threshold (20%) to require supplemental insecticide treatments, despite infestations in non-Bt corn reaching >68% in each year. The only Bt and/or insecticide treatment to significantly reduce ear feeding or the proportion of ears injured (mainly by Helicoverpa zea [Boddie]) was the Bt hybrid pyramid producing Vip3A. However, significant protection of yield was detected only in the Bt hybrids producing Cry1A.105 + Cry2Ab2. All Bt traits tested in this study were effective in reducing infestation and feeding damage from fall armyworm, although this did not always result in significant protection of yield. Our results demonstrate the potential and limitations of using chlorantraniliprole with Bt (when resistance is present) and non-Bt corn to manage this pest.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Bridget R. Lassiter ◽  
David L. Jordan ◽  
Gail G. Wilkerson ◽  
Barbara B. Shew ◽  
Rick L. Brandenburg

Virginia market type peanut (Arachis hypogaeaL.) cultivars are grown primarily in North Carolina, South Carolina, and Virginia in the US, although growers in these states often plant other market types if marketing opportunities are available. Information on yield potential and management strategies comparing these market types is limited in North Carolina. In separate experiments, research was conducted to determine response of runner, Spanish, and Virginia market types to calcium sulfate and inoculation withBradyrhizobiumat planting, planting and digging dates, planting patterns, and seeding rates. In other experiments, control of thrips (Frankliniellaspp.) using aldicarb, southern corn rootworm (Diabrotica undecimpunctataHowardi) using chlorpyrifos, eclipta (Eclipta prostrataL.) using threshold-based postemergence herbicides, and leaf spot disease (caused by the fungiCercospora arachidicolaandCercosporidium personatum) fungicide programs was compared in these market types. Results showed that management practice and market types interacted for peanut pod yield in only the planting date experiment. Yield of runner and Virginia market types was similar and exceeded yield of the Spanish market type in most experiments.


Plant Disease ◽  
2007 ◽  
Vol 91 (7) ◽  
pp. 809-813 ◽  
Author(s):  
James Susaimuthu ◽  
Rose C. Gergerich ◽  
Mark M. Bray ◽  
Kimberley A. Clay ◽  
John R. Clark ◽  
...  

Symptoms of leaf vein yellowing and bush decline in blackberry were attributed to infection by a novel crinivirus named Blackberry yellow vein associated virus (BYVaV). The disease is an emerging threat to blackberry production because it can cause substantial yield loss. The objective of this study was to identify the source and means of spread of BYVaV. A survey of blackberry plants for BYVaV from wild, cultivated, and nursery stocks was conducted. Insect traps and healthy blackberry sentinel plants were placed among symptomatic plants in a production field throughout two growing seasons to monitor the occurrence of potential vectors and virus spread. Virus indicator plants were grafted with BYVaV-infected blackberry because this virus was latent in some blackberry cultivars, but indicator plants failed to express symptoms when infected with BYVaV. Reverse-transcription polymerase chain reaction detection revealed the occurrence of BYVaV in blackberry nurseries in the United States, in production fields in Arkansas, South Carolina, and North Carolina, and in wild blackberry populations in Arkansas. Whiteflies (Trialeurodes packardii and T. ruborum), potential vectors of BYVaV, were observed on sticky traps placed in blackberry fields and were found colonizing blackberry plants; however, transmission studies failed to produce whitefly-mediated transmission of BYVaV. Further understanding of the disease etiology is needed to devise viable management strategies for this disease.


Author(s):  
J. T. Ellzey ◽  
D. Borunda ◽  
B. P. Stewart

Genetically alcohol deficient deer mice (ADHN/ADHN) (obtained from the Peromyscus Genetic Stock Center, Univ. of South Carolina) lack hepatic cytosolic alcohol dehydrogenase. In order to determine if these deer mice would provide a model system for an ultrastructural study of the effects of ethanol on hepatocyte organelles, 75 micrographs of ADH+ adult male deer mice (n=5) were compared with 75 micrographs of ADH− adult male deer mice (n=5). A morphometric analysis of mitochondrial and peroxisomal parameters was undertaken.The livers were perfused with 0.1M HEPES buffer followed by 0.25% glutaraldehyde and 2% sucrose in 0.1M HEPES buffer (4C), removed, weighed and fixed by immersion in 2.5% glutaraldehyde in 0.1M HEPES buffer, pH 7.4, followed by a 3,3’ diaminobenzidine (DAB) incubation, postfixation with 2% OsO4, en bloc staining with 1% uranyl acetate in 0.025M maleate-NaOH buffer, dehydrated, embedded in Poly/Bed 812-BDMA epon resin, sectioned and poststained with uranyl acetate and lead citrate. Photographs were taken on a Zeiss EM-10 transmission electron microscope, scanned with a Howtek personal color scanner, analyzed with OPTIMAS 4.02 software on a Gateway2000 4DX2-66V personal computer and stored in Excel 4.0.


Sign in / Sign up

Export Citation Format

Share Document