Experimental Validation of a Combined Electromagnetic and Thermal Model for a Microwave Drying of Capillary Porous Materials Inside a Rectangular Wave Guide (Effects of Irradiation Time, Particle Sizes and Initial Moisture Content)

2002 ◽  
Vol 37 (1) ◽  
pp. 15-40 ◽  
Author(s):  
P. Ratanadecho ◽  
K. Aoki ◽  
M. Akahori
2001 ◽  
Vol 124 (1) ◽  
pp. 151-161 ◽  
Author(s):  
P. Ratanadecho ◽  
K. Aoki ◽  
M. Akahori

The drying of capillary porous materials by microwave with rectangular waveguide has been investigated numerically and experimentally. Most importantly, it focuses on the investigation of the distributions of electric field, temperature and moisture profiles within the capillary porous materials. The measurements of temperature and moisture distributions within the capillary porous materials provide a good basis for understanding of the microwave drying process. The mathematical model gives qualitatively comparable trends to experimental data. The calculations of electromagnetic fields inside the rectangular waveguide and the capillary porous materials show that the variation of particle sizes and initial moisture content changes the degree of penetration and rate of microwave power absorbed within the sample. Further, the small particle size leads to much higher capillary pressure resulting in a faster drying time.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Monika Aniszewska ◽  
Krzysztof Słowiński ◽  
Ewa Tulska ◽  
Witold Zychowicz

AbstractThe paper proposes the use of microwave irradiation to lower the initial moisture content of wood chips. The study involved willow and fir chips fractionated by means of a sieve separator and unfractionated ash chips. The wood chips were exposed to a constant microwave power of 800 W for 30 s, 60 s, 120 s and 180 s. The chips were weighed before and after irradiation to measure loss of moisture. It was found that the decline in moisture content increased with wood chip size for a given irradiation time and microwave power. The initial moisture content of wood chips was not found to significantly affect loss of moisture as the drying rates of wood chips with higher and lower moisture content exposed to microwaves were not statistically different. The results showed that irradiation intensity increased with the time of exposure to microwaves and unit radiant energy per unit of evaporated moisture decreased with increasing wood chip size in the 3.15–31.50 mm range.


2001 ◽  
Vol 19 (9) ◽  
pp. 2209-2234 ◽  
Author(s):  
P. Ratanadecho ◽  
K. Aoki ◽  
M. Akahori

1993 ◽  
Vol 115 (3) ◽  
pp. 724-733 ◽  
Author(s):  
F. Kallel ◽  
N. Galanis ◽  
B. Perrin ◽  
R. Javelas

A one-dimensional model for simultaneous heat and moisture transfer in consolidated porous materials is solved for homogeneous brick and mortar slabs. It is validated by comparing numerically predicted moisture content and temperature evolutions with corresponding measured values. It correctly predicts that initially saturated slabs at 20°C which are suddenly placed in contact with air at 20°C and a relative humidity of 50 percent undergo a rapid transient reduction of their temperature down to 13°C due to the evaporation of excess water content. The model is used to study the effets of the initial moisture content and convection transfer coefficients on the minimum temperature of the slabs and on the duration of the transient.


2020 ◽  
Vol 39 (3) ◽  
Author(s):  
C.O. Nwajinka ◽  
E.O. Okonjo ◽  
D.O. Amaefule ◽  
D.C. Okpala

Investigation of microwave drying of sweet potato slices was conducted at microwave oven power settings of 90, 100, 120 Watts and slice thicknesses of 3mm, 4mm and 6mm using Fourier models and response surface methods. The slice samples dried from initial moisture content of 70.71𝒈𝒘𝒂𝒕𝒆𝒓/𝒈𝒅𝒓𝒚 𝒎𝒂𝒕𝒕𝒆𝒓 to 12.7𝒈𝒘𝒂𝒕𝒆𝒓/𝒈𝒅𝒓𝒚 𝒎𝒂𝒕𝒕𝒆𝒓 final (equilibrium) moisture content in the microwave oven. Fourier models adequately fitted the drying data with the following values of the fit parameters: MBE= 0.00002943 to 0.000645, R² = 0.9987 to 1, RMSE = 0.00384 to 0.01692. Effective moisture diffusion coefficient (𝑫𝒆) of the samples ranged from 𝟏.𝟎𝟖𝟐𝟐 × 𝟏𝟎−𝟑m2/s to 𝟖.𝟑𝟖𝟏𝟐 × 𝟏𝟎−𝟑 m2/s. Analysis of Variance (ANOVA) was used to analyze the effect of drying conditions on the samples parameters at 95% ( p<0.05). The results showed that slice thickness and microwave power have significant effects on the ash and fiber contents of the dried potato samples. At the microwave power of 90 W and slice thickness of 4 mm the values of Fiber and Ash retained in the dried sweet potato samples were optimal at 4.30% and 2.50% respectively, after drying for 390 minutes to an average moisture content of 14.2 gH2O/gdm. Optimized equations for predicting the percent ash and fiber contents at combined factors of microwave power and slice thickness were developed using Response Surface Methodology (RSM) at 95% confidence bound. The coefficients of determination (R2) for the models are 0.7333 and 0.9655 for fiber and ash respectively. These are indications that the models can be used to predict the two food components of microwave dried potato slices. Keywords: RSM, Fourier Model, Microwave, Sweet Potato, Ash, Fiber


2011 ◽  
Vol 327 ◽  
pp. 100-104
Author(s):  
Jian Fang Yu ◽  
Hai Dong Li ◽  
Bing Hu Sun ◽  
Hua Qiong Duo

In this study, the effects of microwave radiation intensity, initial moisture content and thickness on the properties of temperature development in Siberian Elm wood samples during the microwave drying have been investigated using a tailor made microwave drying equipment. The results show that with the increase of microwave radiation intensity and a decrease in initial moisture content and thickness, both the temperature and its rate of increase in wood rise rapidly. In the microwave drying, the temperature development curve presented three stages of variation: a sharp increase in temperature − a constant temperature − a slow warm-up.


2013 ◽  
Vol 423-426 ◽  
pp. 746-749
Author(s):  
Samad Khani Moghanaki ◽  
Behnam Khoshandam ◽  
Mohammad Hosein Mirhaj

Convectional dryerswork at high temperature and usually lead to loss of quality for sensitivebiomaterial products (especially in nutrition). In this way the researchersfound the microwave power more effective and suitable for drying processes. Someof microwave drying advantages include the following: short drying time, highquality of product, low operating temperature, flexibility in producing widerange of products and easier process controlling. The article calculated themoisture content and drying rate during drying process. Microwave power, holdertray speed, dimension of samples, irradiation time were considered; under theseconditions experiments were done and the results show that microwave method hasmore advantages as comparing with convectional methods.


2020 ◽  
Vol 10 (19) ◽  
pp. 6953
Author(s):  
Gennadiy Kolesnikov ◽  
Timmo Gavrilov

Drying, as a process of changing the moisture content and temperature of capillary-porous materials, is a necessary step in many technologies. When predicting moisture changes, it is necessary to find a balance between the complexity of a model and the accuracy of the simulation results. The purpose of this work was the development of a mathematical model for drying a capillary-porous material with direct consideration of its initial moisture content and drying temperature. Methods of mathematical modeling were used in the work. Using the developed model, an analysis of the features of the drying process of materials with high and low initial moisture content has been carried out. The analytical relationship for determining the time at which the extremum of the drying rate is reached has been substantiated. A model has been developed to directly take into account the influence of the initial material moisture content and drying temperature. The simulation results are consistent with the experiments on drying ceramic blocks for construction which are described in the literature. The obtained results can be taken into account in studies of the effect of drying modes on the energy consumption of a drying process.


Author(s):  
L. Hübschen

AbstractThe present paper shows the detectable factors on which a sorption isotherm depends. Even if it is well-known that a sorption isotherm is most essentially conditioned by influences of the respective tobacco variety, other factors, such as temperature, initial moisture content, or fibre dimension, play a part as well. In general, a sorption isotherm constitutes a ''summation'' of such factors and, in the end, a combination of desorption and adsorption if the tobacco is dried or moistened from the average commercial moisture content. The tobacco hysteresis is experimentally investigated and discussed


Sign in / Sign up

Export Citation Format

Share Document