Calculation of Moisture Content and Drying Rate during Microwave Drying

2013 ◽  
Vol 423-426 ◽  
pp. 746-749
Author(s):  
Samad Khani Moghanaki ◽  
Behnam Khoshandam ◽  
Mohammad Hosein Mirhaj

Convectional dryerswork at high temperature and usually lead to loss of quality for sensitivebiomaterial products (especially in nutrition). In this way the researchersfound the microwave power more effective and suitable for drying processes. Someof microwave drying advantages include the following: short drying time, highquality of product, low operating temperature, flexibility in producing widerange of products and easier process controlling. The article calculated themoisture content and drying rate during drying process. Microwave power, holdertray speed, dimension of samples, irradiation time were considered; under theseconditions experiments were done and the results show that microwave method hasmore advantages as comparing with convectional methods.

2012 ◽  
Vol 2 (1) ◽  
pp. 14-20
Author(s):  
Yuwana Yuwana

Experiment on catfish drying employing ‘Teko Bersayap’ solar dryer was conducted. The result of the experiment indicated that the dryer was able to increase ambient temperature up to 44% and decrease ambient relative humidity up to 103%. Fish drying process followed equations : KAu = 74,94 e-0,03t for unsplitted fish and KAb = 79,25 e-0,09t for splitted fish, where KAu = moisture content of unsplitted fish (%), KAb = moisture content of splitted fish (%), t = drying time. Drying of unsplitted fish finished in 43.995 hours while drying of split fish completed in 15.29 hours. Splitting the fish increased 2,877 times drying rate.


2016 ◽  
Vol 62 (No. 3) ◽  
pp. 129-140 ◽  
Author(s):  
R.A. Chayjan ◽  
S.A. Radmard

The effect of infrared radiation and microwave radiation on the moisture and thermal diffusivity characteristics of lentil seeds during infrared and microwave drying was investigated. Using mathematical equations, values and curves, moisture and thermal diffusivity were obtained. This study was to determine the moisture and thermal diffusivity of seed lentil with and without shrinkage at input temperatures 40°C and 60°C, infrared powers 1,000 W and 2,000 W and microwave power 270 W and 450 W, when the moisture content was reduced from 60 to 9% (d.b.). Drying rate was increased with increased air temperature, infrared radiation and microwave powers. Also drying rate decreased continuously with decreasing moisture content. The calculated values of moisture diffusivity by considering shrinkage were smaller than the values of moisture diffusivity without considering shrinkage. Moisture diffusivity with and without shrinkage decreased with decrease in moisture content of lentil seeds and thermal diffusivity with and without shrinkage decreased with increased moisture content. Both moisture and thermal diffusivity values decreased with increase in temperature.


Author(s):  
Nurhasmanina Norhadi ◽  
Ammar Mohd Akhir ◽  
Nor Roslina Rosli ◽  
Farid Mulana

Drying is generally used to increase the shelf life of food products. In this context, mango fruit is used as a sample for the drying process because of its high commercial value and particularly high moisture content. The mango was sliced into few batches of sample with a size of 20 mm × 30 mm × 5 mm each. The experiments were conducted using tray and oven dryer at different temperatures of 40, 50 and 60 °C with a steady airflow rate of 1.3 m/s. The objectives are to study the effect of drying time, temperature and air velocity towards drying of mango fruit, to compare the physical characteristics of mango sample after drying and to determine the best drying kinetics model fitted to each tray and oven dryer. The results showed that the increase in drying time, temperature and air velocity would reduce the moisture content while at the same time, drying rate increased significantly. Tray dryer was found to be more effective than oven dryer because of higher drying rate with better product quality and appearance at the end. Furthermore, the gathered data were fitted into few widely used drying mathematical models and it was found that Henderson and Pabis model at 60°C is best suited for tray dryer whereas Page model at 40 °C is the best for oven dryer.


2013 ◽  
Vol 31 (No. 2) ◽  
pp. 132-138 ◽  
Author(s):  
S. Çelen ◽  
K. Kahveci

The microwave drying behaviour of tomato slices was investigated experimentally to determine the effects of microwave power on the drying rate, energy consumption, and dried product quality in terms of colour, and a theoretical model was proposed to define the drying curves of tomato slices. The experiments performed with the microwave power of 90, 180, 360, and 600 W indicate that the drying time and the energy consumption decreased considerably with an increase in microwave power. The experiments also revealed that the drying rate shows first an increase and then a decrease during drying, and that the colour quality of the product deteriorates significantly with the increase of the microwave power. A theoretical model was developed using the solution of energy equation considering the microwave power as an internal heat source. The electric field strength inside the material was assumed to be dependent on the moisture content and the constants emerging from this assumption were obtained by minimising the sum of squared differences between the theoretical results and experimental data obtained for various drying conditions. The results show that the values proposed for the constants provide a good agreement between the theoretical and experimental drying behaviour.  


2001 ◽  
Vol 124 (1) ◽  
pp. 151-161 ◽  
Author(s):  
P. Ratanadecho ◽  
K. Aoki ◽  
M. Akahori

The drying of capillary porous materials by microwave with rectangular waveguide has been investigated numerically and experimentally. Most importantly, it focuses on the investigation of the distributions of electric field, temperature and moisture profiles within the capillary porous materials. The measurements of temperature and moisture distributions within the capillary porous materials provide a good basis for understanding of the microwave drying process. The mathematical model gives qualitatively comparable trends to experimental data. The calculations of electromagnetic fields inside the rectangular waveguide and the capillary porous materials show that the variation of particle sizes and initial moisture content changes the degree of penetration and rate of microwave power absorbed within the sample. Further, the small particle size leads to much higher capillary pressure resulting in a faster drying time.


2016 ◽  
Vol 367 ◽  
pp. 167-174 ◽  
Author(s):  
J.R.J. Junqueira ◽  
K.S. Mendonça ◽  
J.L.G. Corrêa

Drying of sweet potato (Ipomoea batatas (L.)) slices by microwave with and without osmotic dehydration (OD) as a pretreatment was studied. Three osmotic agents (sucrose, sorbitol and fructose) were employed. Drying continued until final moisture content of 20 kg water 100 kg-1 sample. Two different microwave output powers (180 and 350W) were used. The drying kinetics was modeled by mathematical models from the literature. The use of OD and higher microwave power carried out to shorter drying time. Among the tested mathematical models, the Weibull distribution model presented good fitness for drying kinetics obtained in both microwave power.


2017 ◽  
Vol 13 (4) ◽  
Author(s):  
Ruifang Wang ◽  
Lijuan Zhang ◽  
Kun Lei ◽  
Qing Xu ◽  
Wei Tian ◽  
...  

Abstract Drying characteristics of soybeans under different microwave (MW) processing schemes were studied in regard to energy aspects. For drying in a single microwave power density, the experiments were carried out at a constant MW output power throughout the process. It was found that the drying rate is enhanced together with reduced energy consumption at higher single power density, but the soybean cracking ratio is increased gradually from 2 % to 40 % when the power density was changed from 0.2 W/g to 0.8 W/g. Efforts were made to reach a compromise between the drying rate and dried soybean quality by varying the MW power density in several steps overall the drying process, but soybean cracking occurred at a higher ratio due to the fluctuation of drying rate. Microwave drying of soybeans under the power density less than 0.2 W/g with slow and stable drying rate can achieve the soybean cracking ratio controlled within 5 % and lower energy consumption.


2020 ◽  
pp. 108201322098133
Author(s):  
Sagar Nagvanshi ◽  
Subbarao Kotra Venkata ◽  
TK Goswami

Microwave drying works on the volumetric heating concept promoted by electromagnetic radiation at 0.915 or 2.450 GHz. In this study, banana ( Musa Cavendish) was taken as the sample and treated under microwave drying. The effect of two process variables, namely slice thickness (2, 3.5, and 5 mm) and microwave power (180 W, 360 W, and 540 W), were studied on drying kinetics and color kinetics. It was observed that the inverse variation relationship exists between drying time and microwave power level while drying time and slice thickness exhibited a direct variation relationship. A Computer Vision System (CVS) was developed to measure the color values of banana in CIELab space using an algorithm written in MATLAB software. Once the color parameters were obtained, they were fitted in First and Zero-order kinetic models. Both models were found to describe the color values adequately. This study concludes that microwave drying is a promising dehydration technique for banana drying that reduces the significant time of drying. Application of CVS is an excellent approach to measure the surface color of banana.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Monika Aniszewska ◽  
Krzysztof Słowiński ◽  
Ewa Tulska ◽  
Witold Zychowicz

AbstractThe paper proposes the use of microwave irradiation to lower the initial moisture content of wood chips. The study involved willow and fir chips fractionated by means of a sieve separator and unfractionated ash chips. The wood chips were exposed to a constant microwave power of 800 W for 30 s, 60 s, 120 s and 180 s. The chips were weighed before and after irradiation to measure loss of moisture. It was found that the decline in moisture content increased with wood chip size for a given irradiation time and microwave power. The initial moisture content of wood chips was not found to significantly affect loss of moisture as the drying rates of wood chips with higher and lower moisture content exposed to microwaves were not statistically different. The results showed that irradiation intensity increased with the time of exposure to microwaves and unit radiant energy per unit of evaporated moisture decreased with increasing wood chip size in the 3.15–31.50 mm range.


Horticulturae ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 40
Author(s):  
Vincenzo Alfeo ◽  
Diego Planeta ◽  
Salvatore Velotto ◽  
Rosa Palmeri ◽  
Aldo Todaro

Solar drying and convective oven drying of cherry tomatoes (Solanum lycopersicum) were compared. The changes in the chemical parameters of tomatoes and principal drying parameters were recorded during the drying process. Drying curves were fitted to several mathematical models, and the effects of air temperature during drying were evaluated by multiple regression analyses, comparing to previously reported models. Models for drying conditions indicated a final water content of 30% (semidry products) and 15% (dry products) was achieved, comparing sun-drying and convective oven drying at three different temperatures. After 26–28 h of sun drying, the tomato tissue had reached a moisture content of 15%. However, less drying time, about 10–11 h, was needed when starting with an initial moisture content of 92%. The tomato tissue had high ORAC and polyphenol content values after convective oven drying at 60 °C. The dried tomato samples had a satisfactory taste, color and antioxidant values.


Sign in / Sign up

Export Citation Format

Share Document