Nanoscale characteristics of conditioning film development on photobioreactor materials: influence on the initial adhesion and biofilm formation by a cyanobacterium

Biofouling ◽  
2021 ◽  
pp. 1-14
Author(s):  
Suvarna N. L. Talluri ◽  
Robb M. Winter ◽  
David R. Salem
2008 ◽  
Vol 74 (17) ◽  
pp. 5511-5515 ◽  
Author(s):  
Henny C. van der Mei ◽  
Minie Rustema-Abbing ◽  
Joop de Vries ◽  
Henk J. Busscher

ABSTRACT Transition from reversible to irreversible bacterial adhesion is a highly relevant but poorly understood step in initial biofilm formation. We hypothesize that in oral biofilm formation, irreversible adhesion is caused by bond strengthening due to specific bacterial interactions with salivary conditioning films. Here, we compared the initial adhesion of six oral bacterial strains to salivary conditioning films with their adhesion to a bovine serum albumin (BSA) coating and related their adhesion to the strengthening of the binding forces measured with bacteria-coated atomic force microscopy cantilevers. All strains adhered in higher numbers to salivary conditioning films than to BSA coatings, and specific bacterial interactions with salivary conditioning films were accompanied by stronger initial adhesion forces. Bond strengthening occurred on a time scale of several tens of seconds and was slower for actinomyces than for streptococci. Nonspecific interactions between bacteria and BSA coatings strengthened twofold faster than their specific interactions with salivary conditioning films, likely because specific interactions require a closer approach of interacting surfaces with the removal of interfacial water and a more extensive rearrangement of surface structures. After bond strengthening, bacterial adhesion forces with a salivary conditioning film remained stronger than those with BSA coatings.


2020 ◽  
Vol 100 (1) ◽  
pp. 82-89
Author(s):  
C.M.A.P. Schuh ◽  
B. Benso ◽  
P.A. Naulin ◽  
N.P. Barrera ◽  
L. Bozec ◽  
...  

Biofilm-mediated oral diseases such as dental caries and periodontal disease remain highly prevalent in populations worldwide. Biofilm formation initiates with the attachment of primary colonizers onto surfaces, and in the context of caries, the adhesion of oral streptococci to dentinal collagen is crucial for biofilm progression. It is known that dentinal collagen suffers from glucose-associated crosslinking as a function of aging or disease; however, the effect of collagen crosslinking on the early adhesion and subsequent biofilm formation of relevant oral streptococci remains unknown. Therefore, the aim of this work was to determine the impact of collagen glycation on the initial adhesion of primary colonizers such as Streptococcus mutans UA159 and Streptococcus sanguinis SK 36, as well as its effect on the early stages of streptococcal biofilm formation in vitro. Type I collagen matrices were crosslinked with either glucose or methylglyoxal. Atomic force microscopy nanocharacterization revealed morphologic and mechanical changes within the collagen matrix as a function of crosslinking, such as a significantly increased elastic modulus in crosslinked fibrils. Increased nanoadhesion forces were observed for S. mutans on crosslinked collagen surfaces as compared with the control, and retraction curves obtained for both streptococcal strains demonstrated nanoscale unbinding behavior consistent with bacterial adhesin-substrate coupling. Overall, glucose-crosslinked substrates specifically promoted the initial adhesion, biofilm formation, and insoluble extracellular polysaccharide production of S. mutans, while methylglyoxal treatment reduced biofilm formation for both strains. Changes in the adhesion behavior and biofilm formation of oral streptococci as a function of collagen glycation could help explain the biofilm dysbiosis seen in older people and patients with diabetes. Further studies are necessary to determine the influence of collagen crosslinking on the balance between acidogenic and nonacidogenic streptococci to aid in the development of novel preventive and therapeutic treatment against dental caries in these patients.


Biofilms ◽  
2005 ◽  
Vol 2 (2) ◽  
pp. 129-144 ◽  
Author(s):  
D. S. Domozych ◽  
S. Kort ◽  
S. Benton ◽  
T. Yu

The desmid Penium margaritaceum is a common resident of biofilms of shallow Adirondack wetlands in New York State, USA. It was isolated and grown in the laboratory where it readily formed biofilms and produced large amounts of extracellular polymeric substance (EPS). The EPS was separated into two fractions: an EPS gel and soluble EPS. Both fractions were rich in xylose, fucose and glucuronic acid. The EPS gels contained large amounts of 3-linked, 4-linked and 3,4-linked fucose, 3,4-linked glucuronic acid and terminal xylose linkages. The EPS gel consisted of a fibrillar matrix that linked cells and cell substrate together. Immunofluorescence analysis using an anti-EPS antibody revealed that EPS secretion occurs in several different modes, which contributes to initial adhesion, capsule formation and gliding.


2009 ◽  
Vol 75 (9) ◽  
pp. 2861-2868 ◽  
Author(s):  
Sébastien Vilain ◽  
Jakobus M. Pretorius ◽  
Jacques Theron ◽  
Volker S. Brözel

ABSTRACT The soil saprophyte Bacillus cereus forms biofilms at solid-liquid interfaces. The composition of the extracellular polymeric matrix is not known, but biofilms of other bacteria are encased in polysaccharides, protein, and also extracellular DNA (eDNA). A Tn917 screen for strains impaired in biofilm formation at a solid-liquid interface yielded several mutants. Three mutants deficient in the purine biosynthesis genes purA, purC, and purL were biofilm impaired, but they grew planktonically like the wild type in Luria-Bertani broth. Biofilm populations had higher purA, purC, and purL transcript ratios than planktonic cultures, as measured by real-time PCR. Laser scanning confocal microscopy (LSCM) of BacLight-stained samples indicated that there were nucleic acids in the cell-associated matrix. This eDNA could be mobilized off the biofilm into an agarose gel matrix through electrophoresis, and it was a substrate for DNase. Glass surfaces exposed to exponentially growing populations acquired a DNA-containing conditioning film, as indicated by LSCM. Planktonic exponential-phase cells released DNA into an agarose gel matrix through electrophoresis, while stationary-phase populations did not do this. DNase treatment of planktonic exponential-phase populations rendered cells more susceptible than control populations to the DNA-interacting antibiotic actinomycin D. Exponential-phase purA cells did not contain detectable eDNA, nor did they convey a DNA-containing conditioning film to the glass surface. These results indicate that exponential-phase cells of B. cereus ATCC 14579 are decorated with eDNA and that biofilm formation requires DNA as part of the extracellular polymeric matrix.


2013 ◽  
Vol 13 (4) ◽  
pp. 438-451 ◽  
Author(s):  
Srisuda Pannanusorn ◽  
Bernardo Ramírez-Zavala ◽  
Heinrich Lünsdorf ◽  
Birgitta Agerberth ◽  
Joachim Morschhäuser ◽  
...  

ABSTRACT In Candida parapsilosis , biofilm formation is considered to be a major virulence factor. Previously, we determined the ability of 33 clinical isolates causing bloodstream infection to form biofilms and identified three distinct groups of biofilm-forming strains (negative, low, and high). Here, we establish two different biofilm structures among strains forming large amounts of biofilm in which strains with complex spider-like structures formed robust biofilms on different surface materials with increased resistance to fluconazole. Surprisingly, the transcription factor Bcr1, required for biofilm formation in Candida albicans and C. parapsilosis , has an essential role only in strains with low capacity for biofilm formation. Although BCR1 leads to the formation of more and longer pseudohyphae, it was not required for initial adhesion and formation of mature biofilms in strains with a high level of biofilm formation. Furthermore, an additional phenotype affected by BCR1 was the switch in colony morphology from rough to crepe, but only in strains forming high levels of biofilm. All bcr1 Δ/Δ mutants showed increased proteolytic activity and increased susceptibility to the antimicrobial peptides protamine and RP-1 compared to corresponding wild-type and complemented strains. Taken together, our results demonstrate that biofilm formation in clinical isolates of C. parapsilosis is both dependent and independent of BCR1 , but even in strains which showed a BCR1 -independent biofilm phenotype, BCR1 has alternative physiological functions.


2003 ◽  
Vol 69 (8) ◽  
pp. 4814-4822 ◽  
Author(s):  
Ann-Cathrin Olofsson ◽  
Malte Hermansson ◽  
Hans Elwing

ABSTRACT N-Acetyl-l-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Using 10 different bacterial strains isolated from a paper mill, we found that the mode of action of NAC is chemical, as well as biological, in the case of bacterial adhesion to stainless steel surfaces. The initial adhesion of bacteria is dependent on the wettability of the substratum. NAC was shown to bind to stainless steel, increasing the wettability of the surface. Moreover, NAC decreased bacterial adhesion and even detached bacteria that were adhering to stainless steel surfaces. Growth of various bacteria, as monocultures or in a multispecies community, was inhibited at different concentrations of NAC. We also found that there was no detectable degradation of extracellular polysaccharides (EPS) by NAC, indicating that NAC reduced the production of EPS, in most bacteria tested, even at concentrations at which growth was not affected. Altogether, the presence of NAC changes the texture of the biofilm formed and makes NAC an interesting candidate for use as a general inhibitor of formation of bacterial biofilms on stainless steel surfaces.


2020 ◽  
Vol 20 (9) ◽  
pp. 5742-5745
Author(s):  
Min-Kyung Ji ◽  
Byung-Kwon Moon ◽  
Hee-Seon Kim ◽  
Chan Park ◽  
Gye-Jeong Oh ◽  
...  

Periimplantitis is an inflammation similar to periodontitis, and is caused by biofilms formed on the surface of dental implants. Application of plasma on biomaterials has been reported to decrease the initial adhesion of microorganism by causing chemical changes without changing the surface morphology. The purpose of this study is to evaluate the effect of inhibition of biofilm formation on the elapsed time after plasma treatment. Non thermal plasma generator (PGS-200 Plasma generator, Expantech Co., Korea) was applied to the specimens. The elapsed time in the atmosphere was set to 5 immediately after treatment, after 30 minutes of treatment, after 60 minutes of treatment, after 90 minutes of treatment. Surface property change with the elapsed time in the atmosphere after plasma treatment were confirmed by X-ray photoelectron spectroscopy and contact angle. Inhibition of biofilm formation was evaluated by the fluorescent nucleic acid staining. It was confirmed that the chemical composition and bonding state of the surface changes as the elapsed time in the atmosphere increases after plasma treatment. The adhesion of Porphyromonas gingivalis was the lowest immediately after plasma treatment, and increased again with increasing elapsed time in the atmosphere after plasma treatment. As a result of this study, it was confirmed that elapsed time in the atmosphere is a very important factor for inhibition of biofilm formation.


Sign in / Sign up

Export Citation Format

Share Document