Association of Mitochondrial Dysfunction with Oxidative Stress and Immune Suppression in Blunt Snout BreamMegalobrama amblycephalaFed a High-Fat Diet

2014 ◽  
Vol 26 (2) ◽  
pp. 100-112 ◽  
Author(s):  
Kang-Le Lu ◽  
Wei-Na Xu ◽  
Wen-Bin Liu ◽  
Li-Na Wang ◽  
Chun-Nuan Zhang ◽  
...  
Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1201
Author(s):  
Claudio Pirozzi ◽  
Adriano Lama ◽  
Chiara Annunziata ◽  
Gina Cavaliere ◽  
Clara Ruiz-Fernandez ◽  
...  

Lines of evidence have shown the embryogenic and transgenerational impact of bisphenol A (BPA), an endocrine-disrupting chemical, on immune-metabolic alterations, inflammation, and oxidative stress, while BPA toxic effects in adult obese mice are still overlooked. Here, we evaluate BPA’s worsening effect on several hepatic maladaptive processes associated to high-fat diet (HFD)-induced obesity in mice. After 12 weeks HFD feeding, C57Bl/6J male mice were exposed daily to BPA (50 μg/kg per os) along with HFD for 3 weeks. Glucose tolerance and lipid metabolism were examined in serum and/or liver. Hepatic oxidative damage (reactive oxygen species, malondialdehyde, antioxidant enzymes), and mitochondrial respiratory capacity were evaluated. Moreover, liver damage progression and inflammatory/immune response were determined by histological and molecular analysis. BPA amplified HFD-induced alteration of key factors involved in glucose and lipid metabolism, liver triglycerides accumulation, and worsened mitochondrial dysfunction by increasing oxidative stress and reducing antioxidant defense. The exacerbation by BPA of hepatic immune-metabolic dysfunction induced by HFD was shown by increased toll-like receptor-4 and its downstream pathways (i.e., NF-kB and NLRP3 inflammasome) amplifying inflammatory cytokine transcription and promoting fibrosis progression. This study evidences that BPA exposure represents an additional risk factor for the progression of fatty liver diseases strictly related to the cross-talk between oxidative stress and immune-metabolic impairment due to obesity.


2019 ◽  
Vol 241 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Jirapas Sripetchwandee ◽  
Hiranya Pintana ◽  
Piangkwan Sa-nguanmoo ◽  
Chiraphat Boonnag ◽  
Wasana Pratchayasakul ◽  
...  

Obese-insulin resistance following chronic high-fat diet consumption led to cognitive decline through several mechanisms. Moreover, sex hormone deprivation, including estrogen and testosterone, could be a causative factor in inducing cognitive decline. However, comparative studies on the effects of hormone deprivation on the brain are still lacking. Adult Wistar rats from both genders were operated upon (sham operations or orchiectomies/ovariectomies) and given a normal diet or high-fat diet for 4, 8 and 12 weeks. Blood was collected to determine the metabolic parameters. At the end of the experiments, rats were decapitated and their brains were collected to determine brain mitochondrial function, brain oxidative stress, hippocampal plasticity, insulin-induced long-term depression, dendritic spine density and cognition. We found that male and female rats fed a high-fat diet developed obese-insulin resistance by week 8 and brain defects via elevated brain oxidative stress, brain mitochondrial dysfunction, impaired insulin-induced long-term depression, hippocampal dysplasticity, reduced dendritic spine density and cognitive decline by week 12. In normal diet-fed rats, estrogen deprivation, not testosterone deprivation, induced obese-insulin resistance, oxidative stress, brain mitochondrial dysfunction, impaired insulin-induced long-term depression, hippocampal dysplasticity and reduced dendritic spine density. In high-fat–diet-fed rats, estrogen deprivation, not testosterone deprivation, accelerated and aggravated obese-insulin resistance and brain defects at week 8. In conclusion, estrogen deprivation aggravates brain dysfunction more than testosterone deprivation through increased oxidative stress, brain mitochondrial dysfunction, impaired insulin-induced long-term depression and dendritic spine reduction. These findings may explain clinical reports which show more severe cognitive decline in aging females than males with obese-insulin resistance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Priyanka N. Prem ◽  
Gino A. Kurian

Renal ischemia-reperfusion (IR) injury is one of the major causes of acute kidney injury influenced by the ischemic duration and the presence of comorbidities. Studies have reported that high-fat diet consumption can induce renal lipotoxicity and metabolic dyshomeostasis that can compromise the vital functions of kidney. This study aimed to evaluate the impact of a high-fat diet in the recovery of renal tissue from IR and explored the cellular pathology. In this study, 24 male Wistar rats were divided into two groups: normal diet (ND; n = 12) and high-fat diet (HD; n = 12), which were further subdivided into sham and IR groups at the end of the dietary regimen. The high-fat diet was introduced in 4-week-old rats and continued for 16 weeks. IR was induced by bilateral clamping of the renal peduncle for 45 min, followed by 24 h of reperfusion. Blood chemistry, estimated glomerular filtration rate (eGFR), mitochondrial function, and oxidative stress analysis were carried out to study the pathological changes. The rats fed with HD showed a decreased eGFR and elevated plasma creatinine, thereby compromised kidney function. Subcellular level changes in HD rats are deceased mitochondrial copy number, low PGC-1α gene expression, and declined electron transport chain (ETC) enzymes and adenosine triphosphate (ATP) level. Upon IR induction, HD rats exhibited severely impaired renal function (eGFR-0.09 ml/min) and elevated injury markers compared with ND rats. A histological analysis displayed increased tubular necrosis and cast formation in HD-IR in comparison to ND-IR. The oxidative stress and mitochondrial dysfunction were more prominent in HD-IR. In vitro protein translation assessment revealed impaired translational capacity in HD-IR mitochondria, which suggests mitochondrial changes with diet that may adversely affect the outcome of IR injury. High-fat diet consumption alters the normal renal function by modifying the cellular mitochondria. The renal changes compromise the ability of the kidney to recover from ischemia during reperfusion.


Endocrinology ◽  
2012 ◽  
Vol 153 (8) ◽  
pp. 3878-3885 ◽  
Author(s):  
Nattayaporn Apaijai ◽  
Hiranya Pintana ◽  
Siriporn C. Chattipakorn ◽  
Nipon Chattipakorn

Insulin resistance has been shown to be associated with cardiac sympathovagal imbalance, myocardial dysfunction, and cardiac mitochondrial dysfunction. Whereas metformin is a widely used antidiabetic drug to improve insulin resistance, vildagliptin is a novel oral antidiabetic drug in a group of dipeptidyl peptidase-4 inhibitors in which its cardiac effect is unclear. This study aimed to determine the cardiovascular effects of metformin and vildagliptin in rats with insulin resistance induced by high-fat diet. Male Wistar rats were fed with either a normal diet or high-fat diet (n =24 each) for 12 wk. Rats in each group were divided into three subgroups to receive the vehicle, metformin (30 mg/kg, twice daily), or vildagliptin (3 mg/kg, once daily) for another 21 d. Heart rate variability (HRV), cardiac function, and cardiac mitochondrial function were determined and compared among these treatment groups. Rats exposed to a high-fat diet developed increased body weight, visceral fat, plasma insulin, cholesterol, oxidative stress, depressed HRV, and cardiac mitochondrial dysfunction. Metformin and vildagliptin did not alter body weight and plasma glucose levels but decreased the plasma insulin, total cholesterol, and oxidative stress levels. Although both metformin and vildagliptin attenuated the depressed HRV, cardiac dysfunction, and cardiac mitochondrial dysfunction, vildagliptin was more effective in this prevention. Furthermore, only vildagliptin prevented cardiac mitochondrial membrane depolarization caused by consumption of a high-fat diet. We concluded that vildagliptin is more effective in preventing cardiac sympathovagal imbalance and cardiac dysfunction, as well as cardiac mitochondrial dysfunction, than metformin in rats with insulin resistance induced by high-fat diet.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Yue Sun ◽  
Xin Ge ◽  
Xue Li ◽  
Jinrong He ◽  
Xinzhi Wei ◽  
...  

Abstract Obesity has been recognized as a major risk factor for chronic kidney disease, but the underlying mechanism remains elusive. Here, we investigated the mechanism whereby long-term high-fat diet (HFD) feeding induces renal injury in mice. The C57BL/6 mice fed HFD for 16 weeks developed obesity, diabetes, and kidney dysfunction manifested by albuminuria and blood accumulation of BUN and creatinine. The HFD-fed kidney showed marked glomerular and tubular injuries, including prominent defects in the glomerular filtration barrier and increased tubular cell apoptosis. Mechanistically, HFD feeding markedly increased triglyceride and cholesterol contents in the kidney and activated lipogenic pathways for cholesterol and triglyceride synthesis. HFD feeding also increased oxidative stress and induced mitochondrial fission in tubular cells, thereby activating the pro-apoptotic pathway. In HK-2 and mesangial cell cultures, high glucose, fatty acid, and TNF-α combination was able to activate the lipogenic pathways, increase oxidative stress, promote mitochondrial fission, and activate the pro-apoptotic pathway, all of which could be attenuated by an inhibitor that depleted reactive oxygen species. Taken together, these observations suggest that long-term HFD feeding causes kidney injury at least in part as a result of tissue lipid accumulation, increased oxidative stress, and mitochondrial dysfunction, which promote excess programmed cell death.


Author(s):  
Dong Jun Park ◽  
Sunmok Ha ◽  
Jin Sil Choi ◽  
Su Hoon Lee ◽  
Jeong-Eun Park ◽  
...  

Age-related hearing loss (ARHL) is the most common sensory disorder in the elderly. It is associated with aging and hair cell death due to oxidative stress-induced mitochondrial dysfunction. Although transgenic mice and long-term cultures for induction of aging have been used to study ARHL, there are presently no ARHL animal models stimulated by intermittent environmental change for aging. In this study, an ARHL animal model was established by inducing continuous oxidative stress to promote short-term aging of cells, determined based on the expression of the hearing loss-induced phenotype and aging related factors in the short term. The incidence of hearing loss was significantly different among the groups subjected to intermittent hypoxic environment, high-fat diet (HFD), and injection with D-galactose. Continuous oxidative stress and HFD were factors that accelerated cellular aging. Increase in UCP2 affected oxidative stress and mitochondrial dysfunction. CDH23, SLC26A4, KCNQ4, Myo7a, and Myo6, which are ARHL-related factors, were modified by oxidative stress in cells of the hearing organ. We found that intermittent hypoxic, HFD, and galactose injection accelerated cellular aging in the short term. Thus, we anticipate that the development of this hearing loss animal model, which reflects intermittent environmental changes, will benefit future research on ARHL.


Sign in / Sign up

Export Citation Format

Share Document