Dual-band and thermo-mechanical design method for radome walls with graded porous structure

2016 ◽  
Vol 30 (11) ◽  
pp. 1391-1406 ◽  
Author(s):  
Licheng Zhou ◽  
Yang Ju ◽  
Yongmao Pei ◽  
Daining Fang
2018 ◽  
Vol 65 (5) ◽  
pp. 4424-4427 ◽  
Author(s):  
Yongle Wu ◽  
Shao Yong Zheng ◽  
Sai-Wing Leung ◽  
Yuanan Liu ◽  
Quan Xue

Author(s):  
Taesik Jeong ◽  
Thomas P. Kicher ◽  
Ronald J. Zab

Abstract An object-oriented programming (OOP) technique is investigated in order to develop the framework for mechanical design automation systems. A task-oriented decomposition approach is applied to conceptualize the task-object (or task-performing-object) in which common behavior and communication protocols are encapsulated [1]. Each task in the entire design process, either controlling design strategies or performing design methods, is made into an object. The design method objects are implemented using Artificial Intelligence (AI) paradigms, such as artificial neural networks and expert systems. This report explains how OOP is integrated to develop a mechanical design framework (MDF). A single reduction gear box design process was used to identify some of the general tasks involved in mechanical design process. From this process the guidelines for developing task-objects for future systems are formed. Full details of these guidelines and an implementation example in Smalltalk on a PC are available in [7].


Author(s):  
Patrik Boart ◽  
Ola Isaksson

Currently, mechanical design of aero engine structural components is defined by dimensioning of Design Parameters (DP's) to meet Functional Requirements (FR's). FR's are typically loads, geometrical interfaces and other boundary conditions. Parameters from downstream processes are seldom actually seen as DP's. This paper proposes that downstream process parameters are treated as DP's which calls for engineering methods that can define and evaluate these extended set of DP's. Using the proposed approach manufacturing process alternatives can be used as DP's in early stages of product development. Both the capability to quantitatively assess impact of varying manufacturing DP's, and the availability of these design methods are needed to succeed as an early phase design method. One bottleneck is the preparation time to define and generate these advanced simulation models. This paper presents how these manufacturing process simulations can be made available by automating the weld simulation preparation stages of the engineering work. The approach is based on a modular approach where the methods are defined with knowledge based engineering techniques-operating close to the CAD system. Each method can be reused and used independently of each other and adopted to new geometries. A key advantage is the extended applicability to new products, which comes with a new set of DP's. On a local level the lead time to generate such manufacturing simulation models is reduced with more than 99% allowing manufacturing process alternatives to be used as DP's in early stages of product development.


Author(s):  
H. V. Darbinyan

Mechanism and function formalization problem is touched in a novel task based conceptual mechanical design method. The general concept and a specific application of this method were reported in earlier publications. Direct dependence between the function and mechanism, identical synthesis tools for various stages of design and for various mechanical objects are the features making the suggested method advantageously different from existing concept design approaches. The core idea of suggested conceptual design method is the direct relation between challenged function and the mechanical entity which is in charge of implementing the requested function. The existing task based conceptual design methods are not satisfying the designer’s needs for scope of application, universality of design means, visualization and formalization of both mechanical and functional fields. Formalization of functions and mechanisms is an important design tool that will facilitate synthesis, analyzes, visualization and archiving (data base creating) processes of mechanical development. Further progress in unveiling the resources of the suggested design method is mostly based on development of formalization means for both categories of functions and mechanisms. The current study is unveiling newly developed function and mechanism description language that is helping to formalize both mechanical and functional categories facilitating their involvement in design process and making the description of a new product’s mechanical development easy and understandable. Function formalization in conjunction with mechanism formalization allows to formulate precisely the design task and concentrate the designer’s attention on solution of a single task strictly arranged in the hierarchical function tree of all involved tasks and functions.


2019 ◽  
Vol 287 ◽  
pp. 01008
Author(s):  
Hrayr Darbinyan

A novel approach of task based conceptual design(TBCD) has been successfully used as direct guider and efficient developer of unique mechanical structures for many cases of mechanical design. Nearly a decade long efforts of elaboration of efficient every day usage formats for this method have been ended in convenient design pages suitable and applicable for revealing, describing, visualizing and managing the data necessary for organizing the design process from task definition to solutions satisfying original design tasks. The aim of current study is to show steps of a solution generation within frames of a single design cycle and extend this action over consecutive design cycles. Those steps are described from standpoint of general concept design method starting from key model and finished with final aggregation matrice as ultimate step of a single design cycle. Unified mathematical expressions are used for introduction and description of all worked out and developed components of conceptual design. The paper is arranged in a way to show gradual steps of conceptual design(CD) of a power transmission system – a pipe wrench life test machine.


2014 ◽  
Vol 670-671 ◽  
pp. 769-773
Author(s):  
Hong Yao ◽  
Wan Long Han ◽  
Shi Ming Pan ◽  
Zhong Qi Wang

The water droplet erosion protection of the rotor blades has been an important issue for a long time, regardless of the design. The aim of this paper is to present a aerodynamic design method for decrease risk of water droplet erosion in wet steam turbine, as well as to present the comparison between then five diffrent bow stator blades. This paper also presents numerical investigation of three dimensional wet steam flows in a stage. This stage has long transonic blades designed using recent aerodynamic and mechanical design methods. The results show that, the one of the five diffrent bow stator blades decrease rist of water droplet erosion of rotaional blades, and the change of the efficiency is small.


Author(s):  
Kwisoo Kim ◽  
Daehoon Jang ◽  
Baatarkhuu Dorjsuren ◽  
Jongsik Lim ◽  
Dal Ahn

Sign in / Sign up

Export Citation Format

Share Document