Function and Mechanism Formalization in Task Based Conceptual Design Method

Author(s):  
H. V. Darbinyan

Mechanism and function formalization problem is touched in a novel task based conceptual mechanical design method. The general concept and a specific application of this method were reported in earlier publications. Direct dependence between the function and mechanism, identical synthesis tools for various stages of design and for various mechanical objects are the features making the suggested method advantageously different from existing concept design approaches. The core idea of suggested conceptual design method is the direct relation between challenged function and the mechanical entity which is in charge of implementing the requested function. The existing task based conceptual design methods are not satisfying the designer’s needs for scope of application, universality of design means, visualization and formalization of both mechanical and functional fields. Formalization of functions and mechanisms is an important design tool that will facilitate synthesis, analyzes, visualization and archiving (data base creating) processes of mechanical development. Further progress in unveiling the resources of the suggested design method is mostly based on development of formalization means for both categories of functions and mechanisms. The current study is unveiling newly developed function and mechanism description language that is helping to formalize both mechanical and functional categories facilitating their involvement in design process and making the description of a new product’s mechanical development easy and understandable. Function formalization in conjunction with mechanism formalization allows to formulate precisely the design task and concentrate the designer’s attention on solution of a single task strictly arranged in the hierarchical function tree of all involved tasks and functions.

2019 ◽  
Vol 287 ◽  
pp. 01008
Author(s):  
Hrayr Darbinyan

A novel approach of task based conceptual design(TBCD) has been successfully used as direct guider and efficient developer of unique mechanical structures for many cases of mechanical design. Nearly a decade long efforts of elaboration of efficient every day usage formats for this method have been ended in convenient design pages suitable and applicable for revealing, describing, visualizing and managing the data necessary for organizing the design process from task definition to solutions satisfying original design tasks. The aim of current study is to show steps of a solution generation within frames of a single design cycle and extend this action over consecutive design cycles. Those steps are described from standpoint of general concept design method starting from key model and finished with final aggregation matrice as ultimate step of a single design cycle. Unified mathematical expressions are used for introduction and description of all worked out and developed components of conceptual design. The paper is arranged in a way to show gradual steps of conceptual design(CD) of a power transmission system – a pipe wrench life test machine.


2013 ◽  
Vol 572 ◽  
pp. 111-114
Author(s):  
Hrayr Darbinyan

Recent studies [1, 2] were devoted to author's efforts in formalization of conceptual design process based on vast data in mechanical design accumulated over years. The suggested novel method of conceptual design is implying direct dependence of function and a mechanism intending to implement the challenged function, considering a wider interpretation for both categories of mechanism and function. Main aspects of this method relate to formalization of both mechanism and function, formatting of design pages for tracking the concept design process, formalization of synthesis and analyze tools and formation of design models serving different design targets. Effectiveness of those formalization tasks is based on development and usage of specific graph and matrix based mathematical engine, enabling compact presentation of various aspects of conceptual design method. The current study is aiming to disclose the specific conditions of formalization for reconfigurable as categories widely used in mechanism synthesis and analyzes. Formalization of reconfigurable mechanisms will categories is contribute a lot in effectiveness of organization of concept design. An example from design experience is considered to confirm the validity of suggested formalization approach for the case of reconfigurable mechanisms.


Author(s):  
H. V. Darbinyan

In well known conceptual design methods movement based working principles are considered to provide demanded key function of the future mechanism. Acceptable kinematical structures are searched within large number of topological diagrams generated on the base of original mechanism selected in accordance with functional demand. Further filtering of topological diagrams is leaving structures which are satisfactory for structural characteristics and additional functions. For many cases of mechanical design those concept design methods are not providing equal synthesis conditions for all functions, discriminating the rest of functions against the key function. The suggested novel concept design method [1] provides possibility of wide modifications of mechanism and function entities with mandatory dependence between sets of functions and mechanism’ various embodiments and implies application of identical design cycles for different stages of concept design. Some chapters of this method, as main idea, unified synthesis tools, modeling in concept design, graph and matrix based formalization of functions and mechanisms were presented in the earlier publications [2, 3]. Current study aims to formalize the concept design method itself, which facilitates presentation of the suggested design method and enables its formalized comparison with existing ones. Examples of product concept design are considered and resolved by existing methods and by the novel one, thus making obvious feature and performance efficiency evaluation.


Author(s):  
Stefan Wo¨lkl ◽  
Kristina Shea

The importance of the concept development phase in product development is contradictory to the level and amount of current computer-based support for it, especially with regards to mechanical design. Paper-based methods for conceptual design offer a far greater level of maturity and familiarity than current computational methods. Engineers usually work with software designed to address only a single stage of the concept design phase, such as requirements management tools. Integration with software covering other stages, e.g. functional modeling, is generally poor. Using the requirements for concept models outlined in the VDI 2221 guideline for systematic product development as a starting point, the authors propose an integrated product model constructed using the Systems Modeling Language (SysML) that moves beyond geometry to integrate all necessary aspects for conceptual design. These include requirements, functions and function structures, working principles and their structures as well as physical effects. In order to explore the applicability of SysML for mechanical design, a case study on the design of a passenger car’s luggage compartment cover is presented. The case study shows that many different SysML diagram types are suitable for formal modeling in mechanical concept design, though they were originally defined for software and control system development. It is then proposed that the creation and use of libraries defining generic as well as more complicated templates raises efficiency in modeling. The use of diagrams and their semantics for conceptual modeling make SysML a strong candidate for integrated product modeling of mechanical as well as mechatronic systems.


2015 ◽  
Vol 761 ◽  
pp. 63-67 ◽  
Author(s):  
Muhd Ridzuan Mansor ◽  
S.M. Sapuan ◽  
A. Hambali ◽  
Edi Syam Zainudin ◽  
A.A. Nuraini

Spoilers are part of an automotive exterior bodywork system that acts to create additional down force for higher traction. In this paper, a new conceptual design of automotive spoiler component using kenaf polymer composites was developed using integrated TRIZ and morphology chart design method. The aim is to enable direct application of kenaf polymer composites to the spoiler design to achieve better environmental performance of the component while maintaining the required structural strength for safe and functional operation. The overall process involved two major stages, which are the idea generation and concept development. TRIZ method was applied in the idea generation stage where specific solution strategies for the design were created. In the concept development stage, the specific TRIZ solution strategies obtained were later refined into relevant alternative system elements using Morphology chart method. Finally, a new conceptual design of an automotive spoiler was developed using the combination of the identified system elements. The integrated TRIZ and morphology chart method were found to be new tools that can be used effectively in the concept design stage, especially in cases where direct material substitution is given the main focus for the new product development.


2018 ◽  
Vol 90 (8) ◽  
pp. 1272-1281
Author(s):  
Alejandro Sanchez-Carmona ◽  
Cristina Cuerno-Rejado

Purpose A conceptual design method for composite material stiffened panels used in aircraft tail structures and unmanned aircraft has been developed to bear compression and shear loads. Design/methodology/approach The method is based on classical laminated theory to fulfil the requirement of building a fast design tool, necessary for this preliminary stage. The design criterion is local and global buckling happen at the same time. In addition, it is considered that the panel does not fail due to crippling, stiffeners column buckling or other manufacturing restrictions. The final geometry is determined by minimising the area and, consequently, the weight of the panel. Findings The results obtained are compared with a classical method for sizing stiffened panels in aluminium. The weight prediction is validated by weight reductions in aircraft structures when comparing composite and aluminium alloys. Research limitations/implications The work is framed in conceptual design field, so hypotheses like material or stiffeners geometry shall be taken a priori. These hypotheses can be modified if it is necessary, but even so, the methodology continues being applicable. Practical implications The procedure presented in this paper allows designers to know composite structure weight of aircraft tails in commercial aviation or any lifting surface in unmanned aircraft field, even for unconventional configurations, in early stages of the design, which is an aid for them. Originality/value The contribution of this paper is the development of a new rapid methodology for conceptual design of composite panels and the feasible application to aircraft tails and also to unmanned aircraft.


2015 ◽  
Vol 736 ◽  
pp. 146-151
Author(s):  
Hrayr Darbinyan

In a novel approach of task based conceptual design method by proper synthesis and analyzes tools mechanism and function entities are modified, turned into and considered as extendable and squeezable ones , so systemized search of optimal structural solutions inside those entities leads the designer to satisfaction of prior given set of functions. Conceptual design generation procedure includes task simplification phase where a key function (s) based mechanical model is composed and its further development into final concept requires gradual satisfaction of remained pre given functions. Two major sources of mechanical solutions are used for function satisfaction. First is existing knowledge on mechanism available as database and the second source is self-generation of mechanisms by granting DOF action, both procedures strictly implemented in a function targeted manner. The database itself is available in different formats depending on application, tutorial or systemizing purposes. Current study discloses the approaches and methods of modification of mechanisms from database into models and formats applicable and suitable for being used in proposed task based conceptual design method.


Author(s):  
Wenbin Hou ◽  
Chunlai Shan ◽  
Hongzhe Zhang

Since product development lead-time needs to be as short as possible in contemporary enterprises, it is necessary to assess and optimize the performance of the structure in conceptual design phase for avoiding the time consuming production of trial models for vehicle body. This paper proposes a conceptual design tool based on optimization algorithms for global body frames named Vehicle Concept Design-Intelligent CAE system (VCD-ICAE). A multilevel optimization algorithm is applied to optimize the body performance, decide the size parameters, and generate cross-sectional shapes that satisfy design engineers’ required characteristics. The global body stiffness and vibration property would be optimized while decreasing the mass of body. The paper describes the implementation of the optimal algorithm, and Genetic algorithms are applied to solve the optimization problem. A case of optimization for a real car is given to verify the validity of the algorithm.


Sign in / Sign up

Export Citation Format

Share Document