scholarly journals On the anisotropy in the dry-sliding behaviour of a self-lubricating PTFE composite and the effects from surface texturing

2021 ◽  
pp. 1-21
Author(s):  
Liang Ding ◽  
Zhirong Liao ◽  
Paul Butler-Smith ◽  
Michael Colton
2019 ◽  
Vol 71 (7) ◽  
pp. 949-955
Author(s):  
Yongmei Zhu ◽  
Junjie Chen ◽  
Jiajun Du ◽  
Yujie Fan ◽  
Jifei Zheng

Purpose Previous publications were mainly focused on the effect of textures under lubrication. Under dry sliding, area ratio of surface texturing (pit area ratio) and diameter of pit affect the tribological behavior. This paper aims to investigate the effect of laser surface texturing on tribological behavior of nodular cast iron under dry sliding. Design/methodology/approach Pit-like textures with different diameters and spaces were fabricated by laser on nodular cast iron (QT600-3). Using nodular cast iron (QT600-3) as the disc specimen and resin matrix composites (UCV018) as the pad specimen, the tribological test was performed with pin-on-disk reciprocating tribo-tester. Findings The coefficient of friction (COF) of the non-textured specimen was larger than that of the textured one. For the same pit diameter, a larger pit area ratio induced a slight decrease of COF, while wear volume decreased significantly. The pit diameter induced a slight decrease of COF as the pit area ratio, but its effect was weaker. Practical implications The experimental studies will help to improve the brake system such as structure modeling of brake disc. Predicting the performance and life of the brake disc in vehicle based on tribological behavior checked in test, it was proved that pit-like texture had application value in vehicle brake system. Originality/value This paper showed that the effect of pit area ratio on friction and wear was greater than that of pit diameter. The experimental results will be useful to the design on safety brake disc.


2015 ◽  
Vol 92 ◽  
pp. 136-145 ◽  
Author(s):  
Qichun Sun ◽  
Tianchang Hu ◽  
Hengzhong Fan ◽  
Yongsheng Zhang ◽  
Litian Hu

2021 ◽  
Vol 1034 ◽  
pp. 51-60
Author(s):  
Satish Chinchanikar ◽  
Amol Barade ◽  
Abhijeet Deshpande

In the present work, dry sliding wear characteristics of polytetrafluoroethylene (PTFE) composite reinforced with 35% by weight carbon fiber against AISI 304 stainless steel counterface is investigated with a view to consider PTFE composite as an alternative material for automotive applications. Dry sliding experiments were performed on pin-on-disk wear testing machine varying the normal load on pin, disk rotation (rpm) and temperature correlating with the range of pressure, sliding velocity and temperature variation at reciprocating conditions of compressor. A mathematical model to predict specific wear rate in terms of pressure and temperature was developed to understand parametric effect on wear rate. Specific wear rate has been observed to decrease with increase in pressure and temperature. Although, pressure (normal load) has been observed as more significant in lowering specific wear rate than temperature, no significant benefit was observed at higher ranges of pressure. Decrease in specific wear rate with increase in normal load (pressure) can be attributed to formation of transfer film at sliding interfaces. However, it is necessary to characterize transition of formation of transfer film varying with normal load and temperature respectively.


Author(s):  
Wenlong Song ◽  
Lei An ◽  
Yang Lu ◽  
Xuan Zhang ◽  
Shoujun Wang

Author(s):  
Ola H. Rashwan ◽  
Vesselin Stoilov

In recent years, micro surface texturing for friction and adhesion control has gained momentum in a wide range of applications, such as MEMS devices, punches, and tools used metal forming processes, and injection molding machines. In this study, air hardened tool steel, A2, with micro hexagonal dimples of different sizes and densities but constant depth, have been modeled and tested under dry sliding contact. Three-dimensional finite element models depict sliding dry contact between a rigid indenter and elastic-plastic textured surfaces are simulated. Coefficients of friction have been determined and compared for different texturing sizes and densities. In addition, these hexagonal patterns were fabricated on tool steel (A2) samples using photolithography. Coefficients of friction were experimentally measured using micro scratch tribometer. Both simulation and experimental results show there is a strong correlation between micro-texturing parameters and coefficient of friction. The results demonstrate that under dry sliding contact, coefficient of friction can be controlled through optimization of micro texturing parameters, specifically the spatial texture density (D/L) which is equal to the ratio of the size of the dimple (D) to the distance between the centers of two consecutive dimples (L). A minimum coefficient of friction exits at values of spatial texture densities (D/L) that range between 0.25 and 0.5 for this specific material.


Sign in / Sign up

Export Citation Format

Share Document