Sliding Wear Characteristics of Carbon Filled Polytetrafluoroethylene (PTFE) Composite against AISI 304 Stainless Steel Counterface

2021 ◽  
Vol 1034 ◽  
pp. 51-60
Author(s):  
Satish Chinchanikar ◽  
Amol Barade ◽  
Abhijeet Deshpande

In the present work, dry sliding wear characteristics of polytetrafluoroethylene (PTFE) composite reinforced with 35% by weight carbon fiber against AISI 304 stainless steel counterface is investigated with a view to consider PTFE composite as an alternative material for automotive applications. Dry sliding experiments were performed on pin-on-disk wear testing machine varying the normal load on pin, disk rotation (rpm) and temperature correlating with the range of pressure, sliding velocity and temperature variation at reciprocating conditions of compressor. A mathematical model to predict specific wear rate in terms of pressure and temperature was developed to understand parametric effect on wear rate. Specific wear rate has been observed to decrease with increase in pressure and temperature. Although, pressure (normal load) has been observed as more significant in lowering specific wear rate than temperature, no significant benefit was observed at higher ranges of pressure. Decrease in specific wear rate with increase in normal load (pressure) can be attributed to formation of transfer film at sliding interfaces. However, it is necessary to characterize transition of formation of transfer film varying with normal load and temperature respectively.

Author(s):  
K. Ramya Sree ◽  
G. Keerthi Reddy ◽  
G. Lakshmi Prasanna ◽  
J. Saranya ◽  
A. Anitha Lakshmi ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3074
Author(s):  
Kaveh Torkashvand ◽  
Vinod Krishna Selpol ◽  
Mohit Gupta ◽  
Shrikant Joshi

Sliding wear performance of thermal spray WC-based coatings has been widely studied. However, there is no systematic investigation on the influence of test conditions on wear behaviour of these coatings. In order to have a good understanding of the effect of test parameters on sliding wear test performance of HVAF-sprayed WC–CoCr coatings, ball-on-disc tests were conducted under varying test conditions, including different angular velocities, loads and sliding distances. Under normal load of 20 N and sliding distance of 5 km (used as ‘reference’ conditions), it was shown that, despite changes in angular velocity (from 1333 rpm up to 2400 rpm), specific wear rate values experienced no major variation. No major change was observed in specific wear rate values even upon increasing the load from 20 N to 40 N and sliding distance from 5 km to 10 km, and no significant change was noted in the prevailing wear mechanism, either. Results suggest that no dramatic changes in applicable wear regime occur over the window of test parameters investigated. Consequently, the findings of this study inspire confidence in utilizing test conditions within the above range to rank different WC-based coatings.


2018 ◽  
Vol 5 (2) ◽  
pp. 7571-7576 ◽  
Author(s):  
M. Krishna Kumar ◽  
R. Saravanan ◽  
R. Sellamuthu ◽  
Vijay Narayanan

2015 ◽  
Vol 766-767 ◽  
pp. 219-228 ◽  
Author(s):  
N.G. Siddeshkumar ◽  
G.S. Shiva Shankar ◽  
S. Basavarajappa

An attempt has been made to study the dry sliding wear behaviour of Aluminium based hybrid composites in room temperature.Al 2219 is used as base material with B4C and MoS2 as reinforcements. The hybrid composite were prepared by conventional stir casting technique. The dry sliding wear test were carried out for various parameters like sliding distance, applied load and sliding speed. The Optical Microscope and SEM results showed the presence of B4C and MoS2, which are fairly uniform and randomly dispersed on matrix material.XRD analysis, shown the presence of B4C and MoS2 phases in the prepared composites.The incorporation of reinforcement particles B4C and MoS2 reduces the specific wear rate of composites. The addition of MoS2 as a secondary reinforcement has significant effect on reducing specific wear rate of prepared composites. By using SEM worn surface of hybrid composites were studied.


2021 ◽  
Vol 9 ◽  
Author(s):  
R. Kousik Kumaar ◽  
◽  
K. Somasundara Vinoth ◽  
Kavitha M ◽  
◽  
...  

This article aims in exploring the dry sliding wear performances on the aluminum (AA7075) metal matrix composites reinforced with molybdenum disulphide which is a solid lubricant using response surface methodology (RSM). Specific Wear Rate (SWR) for the AA7075 pure alloy, AA7075+2wt% molybdenum disulphide and AA7075+4wt% molybdenum disulphide were measured according to ASTM G99 standards in pin-on-disc apparatus. Design of experiments was selected with changed parameters like the varying percentage of molybdenum disulphide (%), applied load (N), and sliding velocity (m/s) based on Central Composite Design in response surface methodology considering them as continuous factors. Experiments for the specific wear rate of pure alloy and the composites were conducted. The volume loss was measured using the pin-on-disc apparatus from which the specific wear rate value was calculated. The obtained results are analyzed and a mathematical model was formulated using the response surface methodology. The optimum level parameters for the specific wear rate has been identified and the results of the experiment specify that the sliding velocity and molybdenum disulphide percentage have a substantial role in controlling the wear behaviour of composites when compared with the other parameter. The optimum condition for the specific wear rate was identified and experimented with for studying the result.


2021 ◽  
pp. 2150106
Author(s):  
P. C. ELUMALAI ◽  
R. GANESH

In this work, the dry sliding wear behaviors of pure monolithic magnesium and magnesium–titanium dioxide (Mg–TiO2) composites were studied using pin-on-disc tribometer against an oil-hardened nonshrinking die steel (OHNS) counter-disc with a normal load of 0.5–2[Formula: see text]kg and a sliding velocity of 1.5–2.5[Formula: see text][Formula: see text] with the sliding distance and wear track diameter of 1500[Formula: see text]m and 90[Formula: see text]mm, respectively. The pin samples were characterized for their microstructural, nanomechanical and tribological properties such as wear rate, coefficient of friction and wear fractographs. Scanning electron microscopy (SEM) was used to analyze the worn-out surfaces of each pin sample in order to identify the different types of wear and wear mechanisms and the chemical constituents of each element were quantified by energy-dispersive spectroscopy. The influence of TiO2 reinforcements on the nanomechanical behavior was studied by nanoindentation technique. As compared with pure Mg, the nanoindentation strengths of Mg–1.5TiO2, Mg–2.5TiO2 and Mg–5TiO2 composites were found to increase by 11.9%, 22.2% and 35.8%, respectively, which was due to the addition of TiO2 particles and also due to the good bonding at the interface of TiO2 and magnesium particles. From the wear test results, a significant change in wear rate was observed with the change in normal load than that of sliding speed, whereas a significant change in coefficient of friction was noticed with the changes in both normal load and sliding velocity. The dominant wear mechanisms involved under the testing conditions were identified through plotting the contour maps and SEM fractographs. Also, from the fractographs it was noticed that delamination and plowing effect have been the significant wear mechanisms observed during low wear rate of samples, whereas melting, delamination and oxidation wear have been observed during high wear rate of pure Mg and its composites.


2019 ◽  
Vol 895 ◽  
pp. 200-205
Author(s):  
B.S. Kanthraju ◽  
Bheemappa Suresha ◽  
H.M. Somashekar

This paper presents the effect of zirconia filler on mechanical properties and dry sliding wear of bidirectional hybrid (glass and basalt fiber) fabric reinforced epoxy (G-B/E) composites. Fabrication was done by hand layup method followed by compression molding. The effect of zirconia filler loading on mechanical characteristics like hardness, tensile and flexure of fabricated G-B/E composites were determined according to ASTM standards. Also, wear behavior under dry sliding condition was performed using pin-on-disc machine for different applied normal loads/sliding distance. Experimental results reveal that incorporation of zirconia filler improves the mechanical properties. Further, the wear test results indicated addition of zirconia into G-B/E hybrid fiber composites plays important role on specific wear rate under the tribo-conditions selected for the study. Further, inclusion of zirconia into G-B/E composites shows improved wear resistance and addition of 6 wt. % of zirconia exhibits least specific wear rate compared to other hybrid G-B/E composites. In addition, Scanning electron microscope images of selected mechanical test fractured coupons also have been discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
M. Sudheer ◽  
Ravikantha Prabhu ◽  
K. Raju ◽  
Thirumaleshwara Bhat

This study evaluates the influence of independent parameters such as sliding velocity (A), normal load (B), filler content (C), and sliding distance (D) on wear performance of potassium-titanate-whiskers (PTW) reinforced epoxy composites using a statistical approach. The PTW were reinforced in epoxy resin to prepare whisker reinforced composites of different compositions using vacuum-assisted casting technique. Dry sliding wear tests were conducted using a standard pin on disc test setup following a well planned experimental schedule based on Taguchi’s orthogonal arrays. With the signal-to-noise (S/N) ratio and analysis of variance (ANOVA) optimal combination of parameters to minimize the wear rate was determined. It was found that inclusion of PTW has greatly improved the wear resistance property of the composites. Normal load was found to be the most significant factor affecting the wear rate followed by (C), (D), and (A). Interaction effects of various control parameters were less significant on wear rate of composites.


Sign in / Sign up

Export Citation Format

Share Document