Enhancement of non-geminate electron–hole pair recombination induced by strong electric field in hydrogenated amorphous silicon (a-Si:H): effective-temperature concept

2008 ◽  
Vol 88 (1) ◽  
pp. 9-17 ◽  
Author(s):  
T. Aoki ◽  
N. Ohrui ◽  
C. Fujihashi ◽  
K. Shimakawa
2012 ◽  
Vol 101 (16) ◽  
pp. 161604 ◽  
Author(s):  
Long He ◽  
James D. Walker ◽  
Howard M. Branz ◽  
Charles T. Rogers ◽  
Charles W. Teplin

1992 ◽  
Vol 258 ◽  
Author(s):  
P.V. Santos ◽  
N.M. Johnson ◽  
R.A. Street

ABSTRACTWe provide experimental evidence for the fact that hydrogen diffusion in hydroge-nated amorphous silicon is controlled by the concentration of electronic carriers. It is experimentally demonstrated that the hydrogen diffusion coefficient (a) is enhanced if the carrier population is increased by illumination and (b) is strongly suppressed if carriers are extracted from the diffusion region by the application of an electric field.


1998 ◽  
Vol 507 ◽  
Author(s):  
Howard M. Branz

ABSTRACTA new microscopic and kinetic model of light-induced metastability in hydrogenated amorphous silicon (a-Si:H) is described. Recombination and trapping of photoinduced carriers excite hydrogen from deep Si-H bonds into a mobile configuration, leaving a dangling bond (DB) defect at the site of excitation. Normally, mobile H are recaptured at DB defects and no metastability or net DB production results. However, when two mobile H collide, they form a metastable two-hydrogen complex and leave two spatially-uncorrelated Staebler-Wronski DBs. Thermal and light-induced annealing occur when mobile H are excited from the metastable two-H complex; they diffuse and are recaptured to DBs. The microscopic model is entirely compatible with electron-spin-resonance results showing neither DB-DB nor DB-H spatial correlation of the light-induced DBs. The model leads to new differential equations describing the evolution of the mobile H and DB densities. These equation equations explain the observed room-temperature Ndb∼G2/3t1/3 dependence of DB creation upon the electron-hole pair creation rate (G) and time. The model also accounts for both t1/3-kinetics at 4.2K and t1/2-kinetics under laser-pulse soaking. Neither of these results can be explained within the prevailing electron-hole pair recombination model.


Sign in / Sign up

Export Citation Format

Share Document