scholarly journals In vitrodifferential modulation of immune response by probiotics in porcine peripheral blood mononuclear cells

2013 ◽  
Vol 25 (2) ◽  
pp. 209-219 ◽  
Author(s):  
Verónica Mata-Haro ◽  
Mónica Reséndiz-Sandoval ◽  
Jesús Hernández
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yu Peng ◽  
Xuan Luo ◽  
Yingying Chen ◽  
Linyi Peng ◽  
Chuiwen Deng ◽  
...  

AbstractThe aim of this study was to elucidate the expression profile and the potential role of long non-coding RNA (LncRNA) in the peripheral blood mononuclear cells of primary Sjögren’s syndrome (pSS) patients. RNA-seq technology was used to detect the differentially expressed LncRNAs and mRNAs between five age-and sex-matched paired pSS patients and healthy control PBMCs. The selected LncRNAs were detected in the validation study by RT-qPCR in 16 paired pSS patients and healthy controls. The GO, KEGG, co-localization, and co-expression analysis were performed to enrich the potential gene functions and pathways. In this study, 44 out of 1772 LncRNAs and 1034 out of 15,424 mRNAs were expressed differentially in the PBMCs of pSS patients. LINC00426, TPTEP1-202, CYTOR, NRIR, and BISPR were validated as aberrantly expressed, and these LncRNAs strongly correlated with disease activity of pSS. GO and KEGG pathway analysis revealed the significant enrichment of biological processes, cellular components, and molecular function of the up and down-regulated mRNAs, which were mainly concentrated in the immune response and immune system processes. Co-localization and co-expression analysis also revealed that differentially expressed LncRNAs in the PBMCs of pSS were strongly correlated to the mRNA functioning associated with immune response and cell metastasis. Numerous LncRNAs and mRNAs were found differentially expressed in the PBMCs of pSS patients, especially NRIR and BISPR; they interacted with the co-localized and co-expressed mRNAs, which might participate in the pathogenesis of pSS through the NF-κB, JAK-STAT, and other signaling pathways that regulate cell metastasis.


2015 ◽  
Vol 168 (2) ◽  
pp. 285-292 ◽  
Author(s):  
Johanna M. Gostner ◽  
Emanuel Raggl ◽  
Kathrin Becker ◽  
Florian Überall ◽  
Harald Schennach ◽  
...  

2006 ◽  
Vol 74 (9) ◽  
pp. 5302-5310 ◽  
Author(s):  
Asna A. Siddiqui ◽  
Robin J. Shattock ◽  
Thomas S. Harrison

ABSTRACT Cryptococcus neoformans is a frequent cause of meningoencephalitis in immunosuppressed individuals. To better understand the mechanisms of a protective immune response to C. neoformans, a long-term in vitro model of human immune control of cryptococcal infection was developed. Peripheral blood mononuclear cells (PBMC) prestimulated with heat-killed C. neoformans significantly restricted the growth of C. neoformans after a subsequent live infection compared to that with unstimulated PBMC. Live infection with encapsulated C. neoformans was controlled for as long as 10 days, while infection with acapsular organisms could sometimes be eradicated. During immune control, fungal cells were both intracellular and extracellular within aggregates of mononuclear phagocytes and lymphocytes. Optimal immune control depended on the presence of both CD4+ and CD8+ T cells. Immune control of cryptococcal growth was more effective following prestimulation with acapsular compared with encapsulated organisms. Prestimulation with acapsular organisms was associated with a significant and prolonged increase in interleukin-6 (IL-6) production compared with prestimulation with encapsulated C. neoformans. Addition of IL-6 and depletion of CD25+ T cells prior to prestimulation and infection with encapsulated organisms resulted in reductions in cryptococcal growth that reached borderline statistical significance. Depletion of CD25+ T cells significantly reduced cryptococcal growth in wells with unstimulated PBMC. The results demonstrate an association between high levels of IL-6 and resistance to infection and, through suppression of IL-6 release, an additional mechanism whereby the cryptococcal capsule subverts a protective immune response. Further work is required to clarify the mechanism of action of IL-6 in this setting and any interaction with regulatory T cells.


2018 ◽  
Author(s):  
Ana Vitlic ◽  
Sohaib Sadiq ◽  
Hafiz I. Ahmed ◽  
Elisa C. Ale ◽  
Ana G. Binetti ◽  
...  

ABSTRACTLactobacillus fermentumLf 2 produces large amounts of exopolysaccharides under optimized conditions (∼2 g/L, EPS) which have been shown to possess immunomodulatory activity. In this study, the crude EPS was fractionated to give a high molecular weight (HMw) homoglycan and a mixture of medium molecular weight heteroglycans. The HMw EPS was isolated and identified as a β-glucan.Peripheral blood mononuclear cells (PBMC) were pre-treated with purified polysaccharide to determine if the HMw β-glucan is responsible for the immunomodulatory activity. Cells were also stimulated with either lipopolysaccharide (LPS) or phytohemagglutinin (PHA) and their effects, both with and without β-glucan pre-treatment, compared.Exposure of the cells to β-glucan increased their metabolic activity and whilst a small but statistically significant drop in CD14 expression was observed at Day 1, the levels were significantly elevated at Day 2. High levels of CD14 expression were observed in cells initially exposed to the β-glucan and subsequently stimulated with either LPS or PHA. In contrast, reduced levels of TLR-2 expression were observed for cells initially exposed to the β-glucan and subsequently stimulated with LPS.TNF-α levels were elevated in β-glucan treated cells (Day1) with the levels dropping back once the β-glucan had been removed (Day 2). The stimulants LPS and PHA both induced significant rises in TNF-α levels, however, this induction was completely (LPS) or partially blocked (PHA) in β-glucan pre-treated cells.The results indicate a role for the bacterial β-glucan in modulating the immune response following exposure to agonists such as bacterial LPS.


Author(s):  
Suji Kim ◽  
Hyun-Eui Park ◽  
Woo Bin Park ◽  
Seo Yihl Kim ◽  
Hong-Tae Park ◽  
...  

Mycobacterium avium, an opportunistic intracellular pathogen, is a member of the non-tuberculous mycobacteria species. M. avium causes respiratory disease in immunosuppressed individuals and a wide range of animals, including companion dogs and cats. In particular, the number of infected companion dogs has increased, although the underlying mechanism of M. avium pathogenesis in dogs has not been studied. Therefore, in the present study, the host immune response against M. avium in dogs was investigated by transcriptome analysis of canine peripheral blood mononuclear cells. M. avium was shown to induce different immune responses in canine peripheral blood mononuclear cells at different time points after infection. The expression of Th1-associated genes occurred early during M. avium infection, while that of Th17-associated genes increased after 12 h. In addition, the expression of apoptosis-related genes decreased and the abundance of intracellular M. avium increased in monocyte-derived macrophages after infection for 24 h. These results reveal the M. avium induces Th17 immune response and avoids apoptosis in infected canine cells. As the number of M. avium infection cases increases, the results of the present study will contribute to a better understanding of host immune responses to M. avium infection in companion dogs.


Sign in / Sign up

Export Citation Format

Share Document