An improved sequential multi-objective robust optimisation approach considering interval uncertainty reduction under mixed uncertainties

Author(s):  
Hua Wei ◽  
Leshi Shu ◽  
Yang Yang ◽  
Qi Zhou ◽  
Linjun Zhong ◽  
...  
Author(s):  
M. Li ◽  
N. Williams ◽  
S. Azarm

Sensitivity analysis has received significant attention in engineering design. While sensitivity analysis methods can be global, taking into account all variations, or local, taking into account small variations, they generally identify which uncertain parameters are most important and to what extent their effect might be on design performance. The extant methods do not, in general, tackle the question of which ranges of parameter uncertainty are most important or how to best allocate investments to partial uncertainty reduction in parameters under a limited budget. More specifically, no previous approach has been reported that can handle single-disciplinary multi-output global sensitivity analysis for both a single design and multiple designs under interval uncertainty. Two new global uncertainty metrics, i.e., radius of output sensitivity region and multi-output entropy performance, are presented. With these metrics, a multi-objective optimization model is developed and solved to obtain fractional levels of parameter uncertainty reduction that provide the greatest payoff in system performance for the least amount of “investment”. Two case studies of varying difficulty are presented to demonstrate the applicability of the proposed approach.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
M. Li ◽  
N. Williams ◽  
S. Azarm

Sensitivity analysis has received significant attention in engineering design. While sensitivity analysis methods can be global, taking into account all variations, or local, taking into account small variations, they generally identify which uncertain parameters are most important and to what extent their effect might be on design performance. The extant methods do not, in general, tackle the question of which ranges of parameter uncertainty are most important or how to best allocate Investments to partial uncertainty reduction in parameters under a limited budget. More specifically, no previous approach has been reported that can handle single-disciplinary multi-output global sensitivity analysis for both a single design and multiple designs under interval uncertainty. Two new global uncertainty metrics, i.e., radius of output sensitivity region and multi-output entropy performance, are presented. With these metrics, a multi-objective optimization model is developed and solved to obtain fractional levels of parameter uncertainty reduction that provide the greatest payoff in system performance for the least amount of “Investment.” Two case studies of varying difficulty are presented to demonstrate the applicability of the proposed approach.


2020 ◽  
Vol 45 (2) ◽  
pp. 125-155
Author(s):  
Vadim Romanuke

AbstractA problem of reducing interval uncertainty is considered by an approach of cutting off equal parts from the left and right. The interval contains admissible values of an observed object’s parameter. The object’s parameter cannot be measured directly or deductively computed, so it is estimated by expert judgments. Terms of observations are short, and the object’s statistical data are poor. Thus an algorithm of flexibly reducing interval uncertainty is designed via adjusting the parameter by expert procedures and allowing to control cutting off. While the parameter is adjusted forward, the interval becomes progressively narrowed after every next expert procedure. The narrowing is performed via division-by-q dichotomization cutting off the q−1-th parts from the left and right. If the current parameter’s value falls outside of the interval, forward adjustment is canceled. Then backward adjustment is executed, where one of the endpoints is moved backwards. Adjustment is not executed when the current parameter’s value enclosed within the interval is simultaneously too close to both left and right endpoints. If the value is “trapped” like that for a definite number of times in succession, the early stop fires.


2011 ◽  
Vol 133 (6) ◽  
Author(s):  
W. Hu ◽  
M. Li ◽  
S. Azarm ◽  
A. Almansoori

Many engineering optimization problems are multi-objective, constrained and have uncertainty in their inputs. For such problems it is desirable to obtain solutions that are multi-objectively optimum and robust. A robust solution is one that as a result of input uncertainty has variations in its objective and constraint functions which are within an acceptable range. This paper presents a new approximation-assisted MORO (AA-MORO) technique with interval uncertainty. The technique is a significant improvement, in terms of computational effort, over previously reported MORO techniques. AA-MORO includes an upper-level problem that solves a multi-objective optimization problem whose feasible domain is iteratively restricted by constraint cuts determined by a lower-level optimization problem. AA-MORO also includes an online approximation wherein optimal solutions from the upper- and lower-level optimization problems are used to iteratively improve an approximation to the objective and constraint functions. Several examples are used to test the proposed technique. The test results show that the proposed AA-MORO reasonably approximates solutions obtained from previous MORO approaches while its computational effort, in terms of the number of function calls, is significantly reduced compared to the previous approaches.


Author(s):  
J. Hamel ◽  
M. Li ◽  
S. Azarm

Uncertainty in the input parameters to an engineering system may not only degrade the system’s performance, but may also cause failure or infeasibility. This paper presents a new sensitivity analysis based approach called Design Improvement by Sensitivity Analysis (DISA). DISA analyzes the interval parameter uncertainty of a system and, using multi-objective optimization, determines an optimal combination of design improvements required to enhance performance and ensure feasibility. This is accomplished by providing a designer with options for both uncertainty reduction and, more importantly, slight design adjustments. The approach can provide improvements to a design of interest that will ensure a minimal amount of variation in the objective functions of the system while also ensuring the engineering feasibility of the system. A two stage sequential framework is used in order to effectively employ metamodeling techniques to approximate the analysis function of an engineering system and greatly increase the computational efficiency of the approach. This new approach has been applied to two engineering examples of varying difficulty to demonstrate its applicability and effectiveness.


Sign in / Sign up

Export Citation Format

Share Document