Identification of the differentially expressed protein biomarkers in rat blood plasma in response to gamma irradiation

2020 ◽  
Vol 96 (6) ◽  
pp. 748-758 ◽  
Author(s):  
Jia-Li Sun ◽  
Shuang Li ◽  
Xue Lu ◽  
Jiang-Bin Feng ◽  
Tian-Jing Cai ◽  
...  
2019 ◽  
Vol 17 ◽  
Author(s):  
Xiaoli Yu ◽  
Lu Zhang ◽  
Na Li ◽  
Peng Hu ◽  
Zhaoqin Zhu ◽  
...  

Aim: We aimed to identify new plasma biomarkers for the diagnosis of Pulmonary tuberculosis. Background: Tuberculosis is an ancient infectious disease that remains one of the major global health problems. Until now, effective, convenient, and affordable methods for diagnosis of Pulmonary tuberculosis were still lacked. Objective: This study focused on construct a label-free LC-MS/MS based comparative proteomics between six tuberculosis patients and six healthy controls to identify differentially expressed proteins (DEPs) in plasma. Method: To reduce the influences of high-abundant proteins, albumin and globulin were removed from plasma samples using affinity gels. Then DEPs from the plasma samples were identified using a label-free Quadrupole-Orbitrap LC-MS/MS system. The results were analyzed by the protein database search algorithm SEQUEST-HT to identify mass spectra to peptides. The predictive abilities of combinations of host markers were investigated by general discriminant analysis (GDA), with leave-one-out cross-validation. Results: A total of 572 proteins were identified and 549 proteins were quantified. The threshold for differentially expressed protein was set as adjusted p-value < 0.05 and fold change ≥1.5 or ≤0.6667, 32 DEPs were found. ClusterVis, TBtools, and STRING were used to find new potential biomarkers of PTB. Six proteins, LY6D, DSC3, CDSN, FABP5, SERPINB12, and SLURP1, which performed well in the LOOCV method validation, were termed as potential biomarkers. The percentage of cross-validated grouped cases correctly classified and original grouped cases correctly classified is greater than or equal to 91.7%. Conclusion: We successfully identified five candidate biomarkers for immunodiagnosis of PTB in plasma, LY6D, DSC3, CDSN, SERPINB12, and SLURP1. Our work supported this group of proteins as potential biomarkers for pulmonary tuberculosis, and be worthy of further validation.


2021 ◽  
pp. 1-8
Author(s):  
Tiange Wu ◽  
Xiaoning Wang ◽  
Kai Ren ◽  
Xiaochen Huang ◽  
Jiankai Liu

Introduction: The aim of this study was to investigate the modified proteins in methylene blue/light-treated frozen plasma (MB-FP) compared with fresh frozen plasma (FFP) in order to gain a better application of MB/light-treated plasma in clinic transfusion. Methods: MB-FP and FFP were collected from Changchun central blood station, and a trichloroacetic acid/acetone precipitation method was used to remove albumin for the enrichment of lower abundance proteins. The plasma protein in MB-FP and FFP were separated using two-dimensional gel electrophoresis (2-DE) and the differentially expressed protein spots were analyzed using mass spectrometry. Finally, the differentially expressed proteins were tested using Western blot and enzyme-linked immunosorbent assay (ELISA). Results: Approximately 14 differentially expressed protein spots were detected in the MB-FP, and FFP was chosen as the control. After 2-DE comparison analysis and mass spectrometry, 8 significantly differentially expressed protein spots were identified, corresponding to 6 different proteins, including complement C1r subcomponent (C1R), inter-alpha-trypsin inhibitor heavy chain H4 (ITI-H4), keratin, type II cytoskeletal 1 (KRT1), hemopexin (HPX), fibrinogen gamma chain (FGG), and transthyretin (TTR). Western blot showed no significant difference in the expression level of KRT1 between MB-FP and FFP (p > 0.05). Both Western blot and ELISA indicated that the level of HPX was significantly higher in FFP than in MB-FP (p < 0.05). Conclusion: This comparative proteomics study revealed that some significantly modified proteins occur in MB-FP, such as C1R, ITI-H4, KRT1, HPX, FGG, and TTR. Our findings provide more theoretical data for using MB-FP in transfusion medicine. However, the relevance of the data for the transfusion of methylene blue/light-treated plasma remains unclear. The exact modification of these proteins and the effects of these modified proteins on their functions and their effects in clinical plasma infusion need to be further studied.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 891-892
Author(s):  
D. Galbraith ◽  
M. Caliskan ◽  
O. Jabado ◽  
S. Hu ◽  
R. Fleischmann ◽  
...  

Background:RA is a systemic autoimmune disease with heterogeneous manifestation. Recent advances in serum proteomics, such as the SomaScan®platform (SomaLogic, Inc., Boulder, USA), allow for a deeper exploration of the protein biomarkers associated with RA and a better understanding of the molecular aetiology of the disease.Objectives:To characterise the differences in baseline serum proteome of patients with RA (enrolled in the Phase IIIb Abatacept vs adaliMumab comParison in bioLogic-naïvERA subjects with background MTX [AMPLE] study)1compared with a healthy population, and to identify serum protein biomarkers associated with disease severity and radiographic progression.Methods:Patients in the AMPLE study had an inadequate response to MTX and were naïve to biologic DMARDs. Protein abundance was assessed in baseline serum samples from 440 AMPLE study patients and 123 healthy individuals with matching demographics using the SomaScan®platform, with 5000+ slow off-rate modified aptamers and up to 8 log of dynamic range.2Differential abundance testing was performed using linear models to identify differences in protein abundance in patients with RA vs healthy individuals. A separate analysis using a linear model was conducted in only the patients with RA to identify the proteins associated with DAS28 (CRP) and TSS. Pathway analyses were performed for proteins significantly (false discovery rate-adjusted p value <0.05) associated with RA and the disease severity measurements to identify over-representation of the molecular pathways.Results:Compared with healthy individuals, >2000 serum proteins were significantly differentially expressed in patients with RA, including many proteins that have been associated with RA (e.g. serum amyloid A [SAA], CRP) and complement. Most of the protein expression differences were of small magnitude (fold change <2). Proteins that were differentially expressed between patients with RA and healthy individuals were enriched in interleukin signalling, neutrophil degranulation, platelet activation/degranulation and extracellular matrix organisation pathways. DAS28 (CRP) was significantly associated with several biomarkers, including SAA, fibrinogen and CRP; in general, proteins associated with DAS28 (CRP) were most strongly enriched in the platelet activation/degranulation pathways (Figure 1), also seen in patients with RA vs healthy individuals. Additionally, many proteins were significantly associated with TSS, including SAA, matrix metalloproteinase-3 and cartilage acidic protein 1. Here, the proteins were most strongly enriched in the extracellular matrix remodelling pathways (Figure 2).Conclusion:Our study revealed that thousands of serum proteins are differentially expressed and several pathways are dysregulated between patients with RA and healthy individuals. Additional pathways were identified that reflect disease severity, including joint damage, distinct from those pathways associated with the disease. The SomaScan®platform provides a unique proteomic tool with a wide dynamic range for the identification of serum protein biomarkers associated with RA and disease severity. Proteomic signatures should be considered in clinical trials to better understand disease pathogenesis and predict risk in response to treatment.References:[1]Schiff M, et al.Ann Rheum Dis2014;73:86–94.[2]Gold L, et al.PLoS One2010;5:e15004.Acknowledgments:Rachel Rankin (medical writing, Caudex; funding: Bristol-Myers Squibb)Disclosure of Interests:David Galbraith Shareholder of: Bristol-Myers Squibb, Employee of: Bristol-Myers Squibb, Minal Caliskan Employee of: Bristol-Myers Squibb, Omar Jabado Shareholder of: Bristol-Myers Squibb, Employee of: Bristol-Myers Squibb, Sarah Hu Shareholder of: Bristol-Myers Squibb, Employee of: Bristol-Myers Squibb, Roy Fleischmann Grant/research support from: AbbVie, Akros, Amgen, AstraZeneca, Bristol-Myers Squibb, Boehringer, IngelhCentrexion, Eli Lilly, EMD Serono, Genentech, Gilead, Janssen, Merck, Nektar, Novartis, Pfizer, Regeneron Pharmaceuticals, Inc., Roche, Samsung, Sandoz, Sanofi Genzyme, Selecta, Taiho, UCB, Consultant of: AbbVie, ACEA, Amgen, Bristol-Myers Squibb, Eli Lilly, Gilead, GlaxoSmithKline, Novartis, Pfizer, Sanofi Genzyme, UCB, Michael Weinblatt Grant/research support from: Amgen, Bristol-Myers Squibb, Crescendo, Lily, Sanofi/Regeneron, Consultant of: AbbVie, Amgen, Bristol-Myers Squibb, Crescendo, Gilead, Horizon, Lily, Pfizer, Roche, Sean Connolly Shareholder of: Bristol-Myers Squibb, Employee of: Bristol-Myers Squibb, Michael A Maldonado Shareholder of: Bristol-Myers Squibb, Employee of: Bristol-Myers Squibb, Sheng Gao Shareholder of: Bristol-Myers Squibb, Employee of: Bristol-Myers Squibb


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Rajasekaran Namakkal-Soorappan ◽  
Cynthia L David ◽  
Krishna Parsawar

Background: Nuclear factor erythroid 2-related factor 2 (NRF2) signaling is vital for redox homeostasis. We reported that transgenic mice expressing constitutively active Nrf2 (CaNrf2) exhibit reductive stress (RS). Here in, we identified novel protein signatures reacting to RS-induced cardiomyopathy. Methods: Tandem Mass Tag (TMT) proteomic analysis was performed in the heart tissues of Ca-Nrf2-transgenic (TG-low & TG-high) and non-transgenic (NTg) mice at 6 months of age (N= 4/group). Differentially expressed proteins (DEPs) were then identified using Scaffold. Validated the key DEPs using immunoblotting. PANTHER and STRING analysis were used to identify potential targets and their interactions. Results: A total of 1105 proteins were extracted from 24369 spectra. Of note, 226 and 261 proteins were differentially expressed in TG-L and TG-H vs. NTg hearts indicating a unique proteome signature for RS. Heat map analysis revealed a clear distinction between the TG-L and TG-H due to the dose-dependent effects of transgene/RS. Majority of the DEPs that are significantly altered in RS mice found to involve in stress related pathways such as antioxidants, NADPH, protein quality control (PQC), etc. Interestingly, some of these proteins were redox modified at their cysteine residues under chronic RS setting. Conclusions: TMT based proteomic analyses revealed unique proteome signatures for RS. The cysteine modifications in multiple proteins likely to cause pathological alterations via impaired PQC mechanisms. Molecular studies related to RS-mediated redox modifications in structural and functional cardiac proteome are underway.


Sign in / Sign up

Export Citation Format

Share Document