Design of pilot-scale solar photocatalytic reactor for the generation of hydrogen from alkaline sulfide wastewater of sewage treatment plant

2013 ◽  
Vol 34 (20) ◽  
pp. 2817-2823 ◽  
Author(s):  
R. Priya ◽  
S. Kanmani
1998 ◽  
Vol 38 (7) ◽  
pp. 207-215 ◽  
Author(s):  
H. Takigami ◽  
N. Taniguchi ◽  
Y. Shimizu ◽  
S. Matsui

The toxicity of organic polymer flocculants used for the dewatering of municipal sludge was evaluated by using two different toxicity assays: the Closterium ehrenbergii algal toxicity test and the Bacillus subtilis rec-assay. The algal toxicity of the effluents from a pilot-scale sewage treatment plant was investigated with and without the addition of a flocculant (0, 0.05, 0.10 and 0.20 mg/L). No clear evidence on the toxicity caused by the flocculant was observed on both asexual and sexual reproduction tests of C. ehrenbergii. It was also found that the algal growth inhibition of various types of flocculants (i.e., cationic, anionic, amphoionic and non-ionic) was in the order of 1 to 20 mg/L, which was mainly due to a molecular weight (MW) fraction of greater than 100,000. The results of the B. subtilis rec-assay for these flocculants indicated that eight out of ten cationic flocculants caused the direct DNA damage with LC50 =0.1 to 10 mg/L. One of the genotoxic flocculants was also fractionated into their components by MW. The experimental results showed that the lethal effects were mainly contributed by the polymer fraction of MW greater than 100,000, although the genotoxicity was not detected in that fraction. Therefore, the detected genotoxicity of the flocculants could be caused by the combined effects of various components, such as polymers, oligomers, monomers and additives.


2014 ◽  
Vol 997 ◽  
pp. 770-776
Author(s):  
Feng Long Xie ◽  
Jian Jun Shen ◽  
Jiang Liu

Based on the pilot test, the feasibility of E lectrosorption Technology of industrial sewage treatment plant was studied. The result s show that, when the equipment w ater flow and electrode voltage appropriate, in the sewage plant industrial average conductivity row is 3277μS/cm, 4072μS/cm, averaged desalination rate is 74.8%, averaged water production rate is about 75.5%, average consu mption water of a ton is 2.46kW•H. E lectrosorption technology is g ood removal effect of salinity, chloride and total hardness , and water production rate is high, simple operation, can be used for desalination of industrial recyclin wastewater .


2021 ◽  
Vol 333 ◽  
pp. 12002
Author(s):  
Regina Damalerio ◽  
Aileen Orbecido ◽  
Michael Angelo Promentilla ◽  
Ramon Christian Eusebio ◽  
Liza Patacsil ◽  
...  

Water utilities, commercial and industrial establishments are required to upgrade or install new treatment systems to comply with the revised effluent standards issued by the Department of Environment and Natural Resources – Environment Management Bureau (DENR – EMB) which now includes removal and monitoring of nutrients (nitrogen and phosphorus components). One solution is to utilize a biological nutrient removal technology (BNRT) system capable of removing nutrients from sewage. The on-going study aims to investigate the performance of the pilot-scale system in the removal of nutrients from sewage. The designed pilot-scale anaerobic-anoxic-oxic (A2O) process with a total hydraulic retention time of 8.37 hrs. was operated in an existing sewage treatment plant (STP). System modification was adapted to ensure continuous operation. Dissolved oxygen (DO) and temperature of each compartment were evaluated after 45 days of system modification. The DO of the anaerobic and oxic compartment remained within the required range, while the internal recycling flowrate and/or aeration must be adjusted to achieve a DO concentration of 0.20 – 0.50 mg/L in the anoxic compartment. The research is financially supported by the Philippine Council for Industry, Energy and Emerging Technology Research and Development of the Department of Science and Technology (PCIEERD Project No. 04176).


1997 ◽  
Vol 35 (5) ◽  
pp. 231-237 ◽  
Author(s):  
M. Schreijer ◽  
R. Kampf ◽  
S. Toet ◽  
J. Verhoeven

Since 1988 experiments have been carried out on a pilot scale on polishing of sewage treatment plant (STP) effluent in a constructed wetland system, a combination of a macrophyte bed and a lagoon. The hydraulic retention time (HRT) has been between one and ten days. At HRTs of 2-3 days a favourable oxygen regime and a high degree of removal of E. coli bacteria could be obtained. The natural alternation of low and high oxygen levels resulted in an extra nitrogen removal from the low levels of nitrogen in the effluent of the STP. Phosphorus removal in the wetland system under these conditions was low, therefore chemical precipitation has to take place in the STP. The favourable results of the study have led to the construction of a full scale 3.5 ha wetland system for the treatment of 3500 m3 effluent day−1 in 1994. The HRT is 2.1 days at dry weather flow. The purpose of this wetland is to further polish the STP effluent in order to match the water quality of the natural local surface waters.


2007 ◽  
Vol 55 (1-2) ◽  
pp. 299-306 ◽  
Author(s):  
B.S. Oh ◽  
S.J. Park ◽  
Y.J. Jung ◽  
S.Y. Park ◽  
J.W. Kang

This study was aimed at exploring the reclamation of sewage treatment plant effluent water (SEW) as an alternative water resource. For the oxidation of SEW, an ozone-UV system, based on the results of the combined ozone/UV process performed in our previous study, was set up under practical conditions, including a series type, continuous mode, semi-pilot scale operation (1.5 m3/d). As a result, the serial contact of the ozone and UV reactors showed lower CODCr and TOC removal efficiencies. However, these were greatly enhanced by recycling the water flow of the ozone-UV system at 40Q, as a result of the improvements in the transferred ozone dose in the ozone reactor and the contact efficiency between photons and ozone in the UV reactor, which approached that achieved in the combined ozone/UV process. For the disinfection of SEW, carried out in a syringe-type batch reactor, the increase of instantaneous ozone demand (ozone ID) led to a higher inactivation efficiency, an increased UV transmittance due to ozonation, and an enhanced inactivation rate of E. coli in the UV reactor. Additionally, it was concluded that the ozone/UV process could overcome the limitations of the ozone alone and UV alone processes for the reclamation of sewage effluent water.


2015 ◽  
Vol 71 (4) ◽  
pp. 518-523 ◽  
Author(s):  
Takashi Onodera ◽  
Kazuaki Syutsubo ◽  
Wilasinee Yoochatchaval ◽  
Haruhiko Sumino ◽  
Motoyuki Mizuochi ◽  
...  

This study investigated down-flow hanging sponge (DHS) technology as a promising trickling filter (TF) using sponge media as a biomass carrier with an emphasis on protection of the biomass against macrofauna overgrazing. A pilot-scale DHS reactor fed with low-strength municipal sewage was operated under ambient temperature conditions for 1 year at a sewage treatment plant in Bangkok, Thailand. The results showed that snails (macrofauna) were present on the surface of the sponge media, but could not enter into it, because the sponge media with smaller pores physically protected the biomass from the snails. As a result, the sponge media maintained a dense biomass, with an average value of 22.3 gVSS/L sponge (58.1 gTSS/L sponge) on day 370. The snails could graze biomass on the surface of the sponge media. The DHS reactor process performance was also successful. The DHS reactor requires neither chemical treatments nor specific operations such as flooding for snail control. Overall, the results of this study indicate that the DHS reactor is able to protect biomass from snail overgrazing.


Sign in / Sign up

Export Citation Format

Share Document