scholarly journals Preliminary Investigation of an Installed Pilot-Scale Biological Nutrient Removal Technology (BNRT) for Sewage Treatment

2021 ◽  
Vol 333 ◽  
pp. 12002
Author(s):  
Regina Damalerio ◽  
Aileen Orbecido ◽  
Michael Angelo Promentilla ◽  
Ramon Christian Eusebio ◽  
Liza Patacsil ◽  
...  

Water utilities, commercial and industrial establishments are required to upgrade or install new treatment systems to comply with the revised effluent standards issued by the Department of Environment and Natural Resources – Environment Management Bureau (DENR – EMB) which now includes removal and monitoring of nutrients (nitrogen and phosphorus components). One solution is to utilize a biological nutrient removal technology (BNRT) system capable of removing nutrients from sewage. The on-going study aims to investigate the performance of the pilot-scale system in the removal of nutrients from sewage. The designed pilot-scale anaerobic-anoxic-oxic (A2O) process with a total hydraulic retention time of 8.37 hrs. was operated in an existing sewage treatment plant (STP). System modification was adapted to ensure continuous operation. Dissolved oxygen (DO) and temperature of each compartment were evaluated after 45 days of system modification. The DO of the anaerobic and oxic compartment remained within the required range, while the internal recycling flowrate and/or aeration must be adjusted to achieve a DO concentration of 0.20 – 0.50 mg/L in the anoxic compartment. The research is financially supported by the Philippine Council for Industry, Energy and Emerging Technology Research and Development of the Department of Science and Technology (PCIEERD Project No. 04176).

1990 ◽  
Vol 22 (7-8) ◽  
pp. 53-60 ◽  
Author(s):  
B. Rabinowitz ◽  
T. D. Vassos ◽  
R. N. Dawson ◽  
W. K. Oldham

A brief review of recent developments in biological nitrogen and phosphorus removal technology is presented. Guidelines are outlined of how current understanding of these two removal mechanisms can be applied in the upgrading of existing wastewater treatment plants for biological nutrient removal. A case history dealing with the upgrading of the conventional activated sludge process located at Penticton, British Columbia, to a biological nutrient removal facility with a design flow of 18,200 m3/day (4.0 IMGD) is presented as a design example. Process components requiring major modification were the headworks, bioreactors and sludge handling facilities.


2001 ◽  
Vol 43 (11) ◽  
pp. 109-117 ◽  
Author(s):  
D. Bixio ◽  
P. van Hauwermeiren ◽  
C. Thoeye ◽  
P. Ockier

The municipal sewage treatment plant (STP) of the city of Ghent (Belgium) has to be retrofitted to a 43%-increase in the nitrogen treatment capacity and to phosphorus removal. Cold weather, dilute sewage and a critical COD over N ratio make the retrofit a challenge for full biological nutrient removal. The potential for fermentation of primary sludge to alter those critical feed sewage characteristics was experimentally evaluated. The idea was that the pinpoint introduction of fermentate could optimise the available reactors by achieving high-rate denitrification and enhanced biological phosphorus removal. The fermentation process was evaluated with a bench scale apparatus. At 20°C (heated process), the hydrolysis yield - expressed in terms of soluble COD - varied from 11% to 24% of the total sludge COD. The fermentation yield expressed in VFA COD varied from 8% to 13% of the total sludge COD. The efficiency of heated fermentation of primary sludge was lower during cold and wet weather, due to the different sewage characteristics, as a result of extended dilution periods and low temperature. The raw sewage, the primary effluent and the fermentate were fractionated according to the requirements for the IAWQ Activated Sludge Model No. 2d. The results clearly show that fermentation in the sewer played an important role and temperature was the driving parameter for the characteristics of the dissolved COD. Instead, the weather flow conditions were the driving parameter for the characteristics of the suspended COD. The results of the detailed fractionation were used as background for process evaluation. The final scenario choice for the retrofit depends on a cost-efficiency calculation.


1998 ◽  
Vol 38 (7) ◽  
pp. 207-215 ◽  
Author(s):  
H. Takigami ◽  
N. Taniguchi ◽  
Y. Shimizu ◽  
S. Matsui

The toxicity of organic polymer flocculants used for the dewatering of municipal sludge was evaluated by using two different toxicity assays: the Closterium ehrenbergii algal toxicity test and the Bacillus subtilis rec-assay. The algal toxicity of the effluents from a pilot-scale sewage treatment plant was investigated with and without the addition of a flocculant (0, 0.05, 0.10 and 0.20 mg/L). No clear evidence on the toxicity caused by the flocculant was observed on both asexual and sexual reproduction tests of C. ehrenbergii. It was also found that the algal growth inhibition of various types of flocculants (i.e., cationic, anionic, amphoionic and non-ionic) was in the order of 1 to 20 mg/L, which was mainly due to a molecular weight (MW) fraction of greater than 100,000. The results of the B. subtilis rec-assay for these flocculants indicated that eight out of ten cationic flocculants caused the direct DNA damage with LC50 =0.1 to 10 mg/L. One of the genotoxic flocculants was also fractionated into their components by MW. The experimental results showed that the lethal effects were mainly contributed by the polymer fraction of MW greater than 100,000, although the genotoxicity was not detected in that fraction. Therefore, the detected genotoxicity of the flocculants could be caused by the combined effects of various components, such as polymers, oligomers, monomers and additives.


2011 ◽  
Vol 11 (3) ◽  
pp. 97-103
Author(s):  
Jerzy Jańczak ◽  
Wojciech Maślanka ◽  
Kamil Nowiński

Causes of polytrophism of three lakes in the Wdzydze Landscape ParkIn the lakes Cheb and Słupino, located in the Wdzydze Landscape Park the quality of waters has been deteriorating in recent years. In the hydrologic year 2009 the quality of water was examined three times. Monthly measurements on the lake inflows and outflows were carried out 12 times to determine biogenic loads. In 2010 the supplementary measurements of biogenic loads were taken in the streams five times. According to Vollenweider's criterion, the loads of nitrogen and phosphorus compounds are too big, the heaviest to Lake Cheb. The discharge from the new sewage treatment plant is directed by the inflows into this lake. A similar situation takes place in the inflow to Lake Schodno. Paradoxically, in some catchments the construction of the sewage treatment plant may result in the deterioration of lake water quality.


1994 ◽  
Vol 29 (12) ◽  
pp. 41-48 ◽  
Author(s):  
J. Charlton

The Melby Wastewater Treatment Plant is located in the municipality of Frederiksværk on the island of Sealand, Denmark. This may be the first full-scale plant in Europe purpose built for biological nutrient removal from diluted wastewater, i.e. weak domestic wastewater mixed with infiltration waters. The relatively strict effluent standards have required the existing treatment plant to be upgraded in capacity, including the design for biological Nitrogen and Phosphorus removal. Due to the weak nature of the influent wastewater, the treatment process that has been adopted includes the application of a primary sludge fermenter to alter the influent characteristics suitable for biological nutrient removal. The treatment process used is the Modified University of Cape Town process utilising a primary sludge fermenter developed at the University of British Columbia in Canada. The combination of these two processes has been successfully applied to meet the strict discharge licence requirements, without the addition of chemicals, despite the unsuitable characteristics of the influent wastewater for biological nutrient removal. The paper describes the operational results for the treatment plant.


Sign in / Sign up

Export Citation Format

Share Document