Validation of a finite element model with six-year-old child anatomical characteristics as specified in Euro NCAP Pedestrian Human Model Certification (TB024)

Author(s):  
Haiyan Li ◽  
Kun Li ◽  
Yongqiang Huang ◽  
Wenle Lv ◽  
Shihai Cui ◽  
...  
Author(s):  
Chao Yu ◽  
Fang Wang ◽  
Bingyu Wang ◽  
Guibing Li ◽  
Fan Li

It has been challenging to efficiently and accurately reproduce pedestrian head/brain injury, which is one of the most important causes of pedestrian deaths in road traffic accidents, due to the limitations of existing pedestrian computational models, and the complexity of accidents. In this paper, a new coupled pedestrian computational biomechanics model (CPCBM) for head safety study is established via coupling two existing commercial pedestrian models. The head–neck complex of the CPCBM is from the Total Human Model for Safety (THUMS, Toyota Central R&D Laboratories, Nagakute, Japan) (Version 4.01) finite element model and the rest of the parts of the body are from the Netherlands Organisation for Applied Scientific Research (TNO, The Hague, The Netherlands) (Version 7.5) multibody model. The CPCBM was validated in terms of head kinematics and injury by reproducing three cadaveric tests published in the literature, and a correlation and analysis (CORA) objective rating tool was applied to evaluate the correlation of the related signals between the predictions using the CPCBM and the test results. The results show that the CPCBM head center of gravity (COG) trajectories in the impact direction (YOZ plane) strongly agree with the experimental results (CORA ratings: Y = 0.99 ± 0.01; Z = 0.98 ± 0.01); the head COG velocity with respect to the test vehicle correlates well with the test data (CORA ratings: 0.85 ± 0.05); however, the correlation of the acceleration is less strong (CORA ratings: 0.77 ± 0.06). No significant differences in the behavior in predicting the head kinematics and injuries of the tested subjects were observed between the TNO model and CPCBM. Furthermore, the application of the CPCBM leads to substantial reduction of the computation time cost in reproducing the pedestrian head tissue level injuries, compared to the full-scale finite element model, which suggests that the CPCBM could present an efficient tool for pedestrian brain-injury research.


2013 ◽  
Vol 291-294 ◽  
pp. 2715-2718
Author(s):  
Hao Chen ◽  
Fang Wang ◽  
Jian Guo Zhang ◽  
Yan Ping Guo ◽  
Hai Yan Song

The aim of the present work was to develop a lain-human finite element model for cushion design to prevent bedsore by performing biomechanical analysis on interface pressure. The geometric data of the human was obtained by laser scans. The finite element model was composed of solid hexahedral elements. The material of the bed cushions was obtained according to the mechanical experiment. The human model was validated by comparing the simulation result with the experimental data. The validated finite element model could be used to facilitate, accelerate and economize the process of design of cushion.


1989 ◽  
Vol 17 (4) ◽  
pp. 305-325 ◽  
Author(s):  
N. T. Tseng ◽  
R. G. Pelle ◽  
J. P. Chang

Abstract A finite element model was developed to simulate the tire-rim interface. Elastomers were modeled by nonlinear incompressible elements, whereas plies were simulated by cord-rubber composite elements. Gap elements were used to simulate the opening between tire and rim at zero inflation pressure. This opening closed when the inflation pressure was increased gradually. The predicted distribution of contact pressure at the tire-rim interface agreed very well with the available experimental measurements. Several variations of the tire-rim interference fit were analyzed.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document