Study on the Origin of Rail Corrugation at a Long Downhill Braking Section Based on Friction-Excited Oscillation

2020 ◽  
Vol 63 (3) ◽  
pp. 439-452
Author(s):  
B. W. Wu ◽  
G. X. Chen ◽  
X. Kang ◽  
Q. Zhu
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
G. M. Mei ◽  
G. X. Chen ◽  
S. Yan ◽  
R. X. Chen

Rail corrugation on low rails of sharp railway curves is still a difficult problem to solve worldwide. Nearly all low rails of the sharp railway curves incur rail corrugation. In the present study, an active method to remedy rail corrugation was studied. From the viewpoint of the frictional self-excited oscillation of a wheelset-track system causing rail corrugation, the effect of wheelset structures on rail corrugation was studied. Three frictional self-excited oscillation models of wheelset-track systems with different wheelset structures were established, which include a heuristic wheelset structure and two being used in the railway industry. The incidence trends of the self-excited oscillations of these three wheelset-track systems were studied. It was found that the wheelset structure has an important effect on rail corrugation, and that the heuristic wheelset structure can restrain or get rid of rail corrugation. With the parameter sensitivity analysis, it was found that when the friction coefficient between the wheel and rail, rail gauge, rail cant, and sleeper span changes to some extent, the heuristic wheelset structure is robust enough to prevent rail corrugation. The proposed heuristic wheelset structure can be used as a potential solution to rail corrugation on sharply curved tracks.


2009 ◽  
Vol 325 (1-2) ◽  
pp. 85-105 ◽  
Author(s):  
P.A. Meehan ◽  
P.A. Bellette ◽  
R.D. Batten ◽  
W.J.T. Daniel ◽  
R.J. Horwood

Wear ◽  
2021 ◽  
pp. 203854
Author(s):  
Xiaolu Cui ◽  
Zhiqiang He ◽  
Bo Huang ◽  
Yuanchang Chen ◽  
Zixue Du ◽  
...  

2014 ◽  
Vol 937 ◽  
pp. 614-619
Author(s):  
Chuan Lin Tang ◽  
Jie Pei ◽  
Dong Hu ◽  
Xiao Ting He

In order to improve the erosion effect of jet under submergence condition, experimental studies of erosion generated from the self-excited pulsed jet was carried out by using developed self-excited oscillation nozzle. The erosion volume and depth of pulsed jet were measured and taking mortar block as an erosion part. The results were that the standoff has significant influence on erosion effect. The erosion volume firstly decreases with increases in cavity length and then increases to a peak value. Erosion volume of pulsed jet is significantly higher than that of continuous jet, the erosion depth of two jet has slight difference.


2021 ◽  
Vol 11 (14) ◽  
pp. 6317
Author(s):  
Feng Jin ◽  
Hong Xiao ◽  
Mahantesh M Nadakatti ◽  
Huiting Yue ◽  
Wanting Liu

In this study, the rapid growth of corrugation caused by the bad quality of grinding works and their wavelength, depth, and evolution processes are captured through field measurements. The residual grinding marks left by poor grinding quality lead to further crack accumulation and corrugation deterioration by decreasing plastic resistance in rails. In this case, the average peak-to-peak values of corrugation grow extremely fast, reaching 1.4 μm per day. The finite element method (FEM) and fracture mechanics methodologies were used to analyze the development and trends in rail surface crack deterioration by considering rails with and without grinding marks. Crack propagation trends increase with residual grinding marks, and they are more severe in circular curve lines. To avoid the rapid deterioration of rail corrugation, intersections between grinding marks and fatigue cracks should be avoided.


Author(s):  
Arjun Krishnan ◽  
Ashwin Krishnan ◽  
Mark Costello

This article examines the fundamental aspects of controlling ground resonance in rotorcraft equipped with actively controlled landing gear. Ground resonance is a mechanical instability affecting rotorcraft on the ground. It occurs at certain rotor speeds, where the lead–lag motion of the rotor couples with the motion of fuselage creating a self-excited oscillation. Typically, passive or semi-active lag dampers are used to avoid instability; however, these are undesirable from a design and maintenance perspective. Innovations in active landing gear for rotorcraft, such as articulated robotic legs, have provided an alternate approach to avoid the instability, eliminating the need for lag dampers with respect to ground resonance. This article extends classic ground resonance to include movable landing gear and identifies key physical parameters affecting dynamic behavior. Applying LQ optimal control to this model, it is shown that ground resonance instability can be eliminated using active landing gear as the control mechanism, even when there is no lag damping present in the rotor. In addition, while superior performance is achieved when landing gear movement can occur both longitudinally and laterally, it is still possible to stabilize ground resonance with inputs in a single direction, albeit with reduced performance.


Fuel ◽  
2021 ◽  
Vol 290 ◽  
pp. 120057
Author(s):  
Bo-qi Jia ◽  
Qing-fei Fu ◽  
Xu Xu ◽  
Li-jun Yang ◽  
Ding-wei Zhang ◽  
...  

Author(s):  
Shun Chen ◽  
David Eager ◽  
Liya Zhao

This paper proposes a softening nonlinear aeroelastic galloping energy harvester for enhanced energy harvesting from concurrent wind flow and base vibration. Traditional linear aeroelastic energy harvesters have poor performance with quasi-periodic oscillations when the base vibration frequency deviates from the aeroelastic frequency. The softening nonlinearity in the proposed harvester alters the self-excited galloping frequency and simultaneously extends the large-amplitude base-excited oscillation to a wider frequency range, achieving frequency synchronization over a remarkably broadened bandwidth with periodic oscillations for efficient energy conversion from dual sources. A fully coupled aero-electro-mechanical model is built and validated with measurements on a devised prototype. At a wind speed of 5.5 m/s and base acceleration of 0.1 g, the proposed harvester improves the performance by widening the effective bandwidth by 300% compared to the linear counterpart without sacrificing the voltage level. The influences of nonlinearity configuration, excitation magnitude, and electromechanical coupling strength on the mechanical and electrical behavior are examined. The results of this paper form a baseline for future efficiency enhancement of energy harvesting from concurrent wind and base vibration utilizing monostable stiffness nonlinearities.


Sign in / Sign up

Export Citation Format

Share Document