Bubble Dynamics, Flow, and Heat Transfer during Flow Boiling in Parallel Microchannels

2008 ◽  
Vol 54 (4) ◽  
pp. 390-405 ◽  
Author(s):  
Youngho Suh ◽  
Woorim Lee ◽  
Gihun Son
Author(s):  
Jinho Jeon ◽  
Woorim Lee ◽  
Youngho Suh ◽  
Gihun Son

Flow boiling in parallel microchannels has received attention as an effective cooling method for high-power-density microprocessor. Despite a number of experimental studies, the bubble dynamics coupled with boiling heat transfer in microchannels is still not well understood due to the technological difficulties in obtaining detailed measurements of microscale two-phase flows. In this study, complete numerical simulation is performed to further clarify the physics of flow boiling in microchannels. The level set method for tracking the liquid-vapor interface is modified to include the effects of phase change and contact angle. The method is further extended to treat the no-slip and contact angle conditions on the immersed solid. Also, the reverse flow observed during flow boiling in parallel microchannels has been investigated. Based on the numerical results, the effects of channel shape and inlet area restriction on the bubble growth, reverse flow and heat transfer are quantified.


Author(s):  
Emilio Baglietto ◽  
Etienne Demarly ◽  
Ravikishore Kommajosyula

Advancement in the experimental techniques have brought new insights into the microscale boiling phenomena, and provide the base for a new physical interpretation of flow boiling heat transfer. A new modeling framework in Computational Fluid Dynamics has been assembled at MIT, and aims at introducing all necessary mechanisms, and explicitly tracks: (1) the size and dynamics of the bubbles on the surface; (2) the amount of microlayer and dry area under each bubble; (3) the amount of surface area influenced by sliding bubbles; (4) the quenching of the boiling surface following a bubble departure and (5) the statistical bubble interaction on the surface. The preliminary assessment of the new framework is used to further extend the portability of the model through an improved formulation of the force balance models for bubble departure and lift-off. Starting from this improved representation at the wall, the work concentrates on the bubble dynamics and dry spot quantification on the heated surface, which governs the Critical Heat Flux (CHF) limit. A new proposition is brought forward, where Critical Heat Flux is a natural limiting condition for the heat flux partitioning on the boiling surface. The first principle based CHF is qualitatively demonstrated, and has the potential to deliver a radically new simulation technique to support the design of advanced heat transfer systems.


Author(s):  
X. Yu ◽  
C. Woodcock ◽  
Y. Wang ◽  
J. Plawsky ◽  
Y. Peles

In this paper we reported an advanced structure, the Piranha Pin Fin (PPF), for microchannel flow boiling. Fluid flow and heat transfer performance were evaluated in detail with HFE7000 as working fluid. Surface temperature, pressure drop, heat transfer coefficient and critical heat flux (CHF) were experimentally obtained and discussed. Furthermore, microchannels with different PPF geometrical configurations were investigated. At the same time, tests for different flow conditions were conducted and analyzed. It turned out that microchannel with PPF can realize high-heat flux dissipation with reasonable pressure drop. Both flow conditions and PPF configuration played important roles for both fluid flow and heat transfer performance. This study provided useful reference for further PPF design in microchannel for flow boiling.


Author(s):  
Bradley T. Holcomb ◽  
Tannaz Harirchian ◽  
Suresh V. Garimella

The heat transfer characteristics during flow boiling of deionized water in parallel microchannels are investigated. The silicon heat sinks contain an array of integrated heaters and diodes for localized heat-flux control and temperature measurement. The channel widths for the three different test pieces range from 250 μm to 2200 μm, with a nominal depth for all channels of 400 μm. The present study investigates the effects of the channel width and mass flux on the boiling performance. This study follows a previous study using a wetting dielectric liquid, and aims to understand the role of wetting since water is relatively non-wetting. From the results of the present study, a weak dependence of the boiling curve and heat transfer coefficient on mass flux was observed. Varying the channel width also does not have a strong effect on either the boiling curve or the heat transfer coefficient. The experimental results are compared to those obtained previously for a dielectric liquid. They are also compared with predictions from several correlations from the literature.


Author(s):  
Chih-Jung Kuo ◽  
Yoav Peles

Flow boiling in parallel microchannels with structured reentrant cavities was experimental studied. Flow patterns, boiling inceptions and heat transfer coefficients were obtained and studied for G = 83 kg/m2-s to G = 303 kg/m2-s and heat fluxes up to 643 W/cm2. The heat transfer coefficient-mass velocity and quality relations had been analyzed to identify boiling mechanism. Comparisons of the performance of the enhanced and plain-wall microchannels had also been made. The microchannels with reentrant cavities were shown to promote nucleation of bubbles and to support significantly better reproducibility and uniformity of bubble generation.


Author(s):  
Pruthvik Raghupathi ◽  
Alyssa Owens ◽  
Mark Steinke ◽  
Ting Yu Lin ◽  
Ankit Kalani ◽  
...  

Abstract Professor Satish G. Kandlikar has been an outstanding researcher in the field of heat transfer having published some of the most widely cited publications over the last 30 years. Through the years he has co-authored 212 journal paper in various areas of heat transfer. The present paper provides a compressive look at Professor Kandlikar’s research work over the years. The research work has been broadly categorized into 1) flow boiling correlations, 2) fluid flow and heat transfer in microchannels, 3) roughness effect at microscale, 4) pool boiling heat transfer and CHF modeling, 5) surface enhancements for pool boiling, 6) numerical modeling of bubble growth in boiling, 7) modeling liquid-vapor and liquid-liquid interfaces, 8) water transport in PEM fuel cells and 9) infrared imaging to detect breast cancer. The research conducted in each of these areas has produced some landmark findings, some of the most widely used theoretical models and an abundance of high quality experimental data. The focus of this paper is to collate major finding and highlights some of the common themes that guided the research in Professor Kandlikar’s group. This will help the readers gain a comprehensive understanding of each of the areas of study in Professor Kandlikar’s group and place the findings of the paper in a larger context.


2009 ◽  
Vol 35 (8) ◽  
pp. 773-790 ◽  
Author(s):  
Jinliang Xu ◽  
Guohua Liu ◽  
Wei Zhang ◽  
Qian Li ◽  
Bin Wang

Author(s):  
Roger D. Flynn ◽  
David W. Fogg ◽  
Jae-Mo Koo ◽  
Ching-Hsiang Cheng ◽  
Kenneth E. Goodson

Microchannel heat exchangers predominately use a parallel channel configuration to maximize heat transfer with minimal pump demand. Previous work optimized bulk performance of liquid flow heat exchangers but noted that upon boiling, flow redistributed among parallel channels, and they ultimately found that this instability caused an uncontrollable operating condition. This work predicts and measures fully coupled boiling flow interaction in a simplified two microchannel system. A series of silicon microfabricated devices enable piecewise study of the coupled fluidic and heat transfer interactions, first uniting the fluid inlets of thermally isolated channels, then connecting neighboring channel walls to allow heat transfer between channels. Multiple combinations of boiling and liquid flow, each satisfying system boundary conditions, are identified using flow demand curves assembled from single channel data. Each unique flow condition is experimentally demonstrated and found to be heavily dependent on the prior state of the channels. Connecting channel walls, thermally, is shown to lessen the number of allowed solutions and increase instability in the two channel system, allowing distinction between purely fluidic instabilities and fluidic instabilities coupled to heat transfer between channels. This work in describing interaction between two channels is a necessary step as work continues toward characterizing flow boiling in more complex parallel channel heat sinks.


Author(s):  
P. Zhang

Flow and heat transfer characteristics of liquid nitrogen in mini/micro-channels own many particular aspects and are very important for applications. In the present study, the investigation of flow and heat transfer characteristics of liquid nitrogen in mini/micro-channels is presented. It is found that small viscosity enables the flow state in mini/micro-channels to be turbulent state, which proves that the classical theory for pressure drop is still valid if the surface roughness of the passage is properly taken into consideration. Experiments of flow boiling of liquid nitrogen are conducted under both adiabatic and diabatic conditions. It is shown that confinement number Co = 0.5 can be applicable in classifying the heat transfer characteristics of liquid nitrogen in macro- and micro-channels. Flow visualization in micro-channels at low temperatures poses big challenges in image magnification and illumination. These two problems have been subtly overcome in the investigation and clear images have been obtained. The flow patterns and flow regimes of two-phase flow of liquid nitrogen indicate different features from the room-temperature fluidss. Furthermore, a very simple but effective method for 3D flow visualization by one high-speed camera is proposed and implemented. Finally, numerical analysis of the flow boiling of liquid nitrogen in mini/micro-channel is carried out to deepen the understanding of mechanism.


Sign in / Sign up

Export Citation Format

Share Document