A Comparative Study of Submicron Phonon Transport Using the Boltzmann Transport Equation and the Lattice Boltzmann Method

2014 ◽  
Vol 66 (4) ◽  
pp. 360-379 ◽  
Author(s):  
Ankur Chattopadhyay ◽  
Arvind Pattamatta
Author(s):  
Dadong Wang ◽  
Yanbao Ma

Lattice Boltzmann method based on Boltzmann transport equation is developed to simulate the nanoscale heat transport in metal film. The Boltzmann transport equation is applicable to describe both electron and phonon scattering processes: the absorption of photon energy by electrons and the subsequent heating of metal lattice (phonons) through electron-phonon collisions. We show that the Boltzmann transport equation can give rise to the well-known two-temperature model. To validate our numerical tool, ultrafast laser heating on metal film is analyzed by lattice Boltzmann method and finite difference method based on two-step model separately, and exactly the same results are obtained. The predicted transient reflectivity changes agree with picosecond laser heating experiments data also.


Author(s):  
Ankur Chattopadhyay ◽  
Arvind Pattamatta

Heat transport at nanoscales departs substantially from the well established classical laws governing the physical processes at continuum level. The Fourier Law of heat conduction cannot be applied at sub-continuum level due to its inability in modeling non-equilibrium energy transport. Therefore one must resort to a rigorous solution to the Boltzmann Transport Equation (BTE) in the realm of nanoscale transport regime. Some recent studies show that a relatively inexpensive and accurate way to predict the behavior of sub continuum energy transport in solids is via the discrete representation of the BTE referred to as the Lattice Boltzmann method (LBM). Although quite a few numerical simulations involving LBM have been exercised in the literature, there has been no clear demonstration of the accuracy of LBM over BTE; also there exists an ambiguity over employing the right lattice configurations describing phonon transport. In the present study, the Lattice Boltzmann Method has been implemented to study phonon transport in miniaturized devices. The initial part of the study focuses upon a detailed comparison of the LBM model with that of BTE for one dimensional heat transfer involving multiple length and time scales. The second objective of the present investigation is to evaluate different lattice structures such as D1Q2, D1Q3, D2Q5, D2Q8, D2Q9 etc. for 1-D and 2-D heat conduction. In order to reduce the modeling complexity, gray model assumption based on Debye approximation is adopted throughout the analysis. Results unveil that the accuracy of solution increases as the number of lattice directions taken into account are incremented from D2Q5 to D2Q9. A substantial increase in solution time with finer directional resolutions necessitates an optimum lattice. A novel lattice dimension ‘Mod D2Q5’ has been suggested and its performance is also compared with its compatriots. It is also demonstrated that the inclusion of the center point within a particular lattice structure can play a significant role in the prediction of thermal conductivity in the continuum level. However, as the size of the device comes down to allow high Knudsen numbers, in the limiting case of ballistic phonon transport, the choice of lattice seems to have negligible effect on thermal conductivity.


2019 ◽  
Vol 44 (9) ◽  
pp. 7627-7652 ◽  
Author(s):  
Z. L. Gan ◽  
Aizat Abas ◽  
M. H. H. Ishak ◽  
M. Z. Abdullah ◽  
Jin Loung Ngang

Author(s):  
Keivan Etessam-Yazdani ◽  
Sadegh M. Sadeghipour ◽  
Mehdi Asheghi

The performance and reliability of sub-micron semiconductor transistors demands accurate modeling of electron and phonon transport at nanoscales. The continued downscaling of the critical dimensions, introduces hotspots, inside transistors, with dimensions much smaller than phonon mean free path. This phenomenon, known as localized heating effect, results in a relatively high temperature at the hotspot that cannot be predicted using heat diffusion equation. While the contribution of the localized heating effect to the total device thermal resistance is significant during the normal operation of transistors, it has even greater implications for the thermoelectrical behavior of the device during an electrostatic discharge (ESD) event. The Boltzmann transport equation (BTE) can be used to capture the ballistic phonon transport in the vicinity of a hot spot but many of the existing solutions are limited to the one-dimensional and simple geometry configurations. We report our initial progress in solving the two dimensional Boltzmann transport equation for a hot spot in an infinite media (silicon) with constant temperature boundary condition and uniform heat generation configuration.


2016 ◽  
Vol 64 (3) ◽  
pp. 599-606 ◽  
Author(s):  
A. Piasecka Belkhayat ◽  
A. Korczak

Abstract In the paper a description of heat transfer in one-dimensional crystalline solids is presented. The lattice Boltzmann method based on Boltzmann transport equation is used to simulate the nanoscale heat transport in thin metal films. The coupled lattice Boltzmann equations for electrons and phonons are applied to analyze the heating process of thin metal films via laser pulse. Such approach in which the parameters appearing in the problem analyzed are treated as constant values is widely used, but in the paper the interval values of relaxation times and electron-phonon coupling factor are taken into account. The problem formulated has been solved by means of the interval lattice Boltzmann method using the rules of directed interval arithmetic. In the final part of the paper the results of numerical computations are shown.


Author(s):  
Kosuke Suzuki ◽  
Takeshi Kato ◽  
Kotaro Tsue ◽  
Masato Yoshino ◽  
Mitsunori Denda

Numerical analysis of the flapping flight of insects has attracted great attention because of the expectation for insect-inspired micro air vehicles. A lot of numerical methods for the insect flight have been proposed, and they can be classified into two categories: inviscid flow solvers and viscous flow solvers. The discrete vortex method (DVM) has been regarded as a successful method in the first category, and the immersed boundary–lattice Boltzmann method (IB-LBM) has recently been developed as an efficient method in the second category. However, a detailed comparative study between these methods has not been sufficiently performed. In this study, we compare the DVM with the IB-LBM in two-dimensional flapping flight analysis. As a result, it is found that the aerodynamic forces obtained by the DVM are comparable to those by the IB-LBM, when the effect of separated vortices is not so accumulated, and when the forward speed of the model is smaller than the flapping speed. In addition, the DVM has a difficulty in estimating the aerodynamic torque. In terms of the computational time, the DVM is much faster than the IB-LBM. This result suggests that the DVM can be used for massive parametric studies or optimizations in flapping flight analysis, although there remain many issues in its accuracy.


2012 ◽  
Vol 134 (8) ◽  
Author(s):  
Chunjian Ni ◽  
Jayathi Y. Murthy

A sub-micron thermal transport model based on the phonon Boltzmann transport equation (BTE) is developed using anisotropic relaxation times. A previously-published model, the full-scattering model, developed by Wang, directly computes three-phonon scattering interactions by enforcing energy and momentum conservation. However, it is computationally very expensive because it requires the evaluation of millions of scattering interactions during the iterative numerical solution procedure. The anisotropic relaxation time model employs a single-mode relaxation time, but the relaxation time is derived from detailed consideration of three-phonon interactions satisfying conservation rules, and is a function of wave vector. The resulting model is significantly less expensive than the full-scattering model, but incorporates directional and dispersion behavior. A critical issue in the model development is the role of three-phonon normal (N) scattering processes. Following Callaway, the overall relaxation rate is modified to include the shift in the phonon distribution function due to N processes. The relaxation times so obtained are compared with the data extracted from equilibrium molecular dynamics simulations by Henry and Chen. The anisotropic relaxation time phonon BTE model is validated by comparing the predicted thermal conductivities of bulk silicon and silicon thin films with experimental measurements. The model is then used for simulating thermal transport in a silicon metal-oxide-semiconductor field effect transistor (MOSFET) and leads to results close to the full-scattering model, but uses much less computation time.


Sign in / Sign up

Export Citation Format

Share Document