Phonon Transport Modeling Using Boltzmann Transport Equation With Anisotropic Relaxation Times

2012 ◽  
Vol 134 (8) ◽  
Author(s):  
Chunjian Ni ◽  
Jayathi Y. Murthy

A sub-micron thermal transport model based on the phonon Boltzmann transport equation (BTE) is developed using anisotropic relaxation times. A previously-published model, the full-scattering model, developed by Wang, directly computes three-phonon scattering interactions by enforcing energy and momentum conservation. However, it is computationally very expensive because it requires the evaluation of millions of scattering interactions during the iterative numerical solution procedure. The anisotropic relaxation time model employs a single-mode relaxation time, but the relaxation time is derived from detailed consideration of three-phonon interactions satisfying conservation rules, and is a function of wave vector. The resulting model is significantly less expensive than the full-scattering model, but incorporates directional and dispersion behavior. A critical issue in the model development is the role of three-phonon normal (N) scattering processes. Following Callaway, the overall relaxation rate is modified to include the shift in the phonon distribution function due to N processes. The relaxation times so obtained are compared with the data extracted from equilibrium molecular dynamics simulations by Henry and Chen. The anisotropic relaxation time phonon BTE model is validated by comparing the predicted thermal conductivities of bulk silicon and silicon thin films with experimental measurements. The model is then used for simulating thermal transport in a silicon metal-oxide-semiconductor field effect transistor (MOSFET) and leads to results close to the full-scattering model, but uses much less computation time.

Author(s):  
Chunjian Ni ◽  
Jayathi Y. Murthy

A sub-micron thermal transport model based on the phonon Boltzmann transport equation (BTE) is developed using anisotropic relaxation times. A previously-published model, the full-scattering model, developed by Wang, directly computes three-phonon scattering interactions by enforcing energy and momentum conservation. However, it is computationally very expensive because it requires the evaluation of millions of scattering interactions during the iterative numerical solution procedure. The anisotropic relaxation time phonon BTE model employs a single-mode relaxation time idea, but the relaxation time is a function of wave-vector. The resulting model is significantly less expensive than the full-scattering model, but incorporates directional and dispersion behavior as well as relaxation times satisfying conservation rules. A critical issue in the model development is the accounting for the role of three-phonon N scattering processes. Direct inclusion of N processes into the anisotropic relaxation time model is not possible because such an inclusion would engender thermal resistance. Following Callaway, the overall relaxation rate is modified to include the shift in the phonon distribution function due to N processes. The relaxation times so obtained are compared with the data extracted from equilibrium molecular dynamics simulation by Henry and Chen. The anisotropic relaxation time phonon BTE model is validated by comparing the predicted bulk thermal conductivities of silicon and silicon thin-film thermal conductivities with experimental measurements.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
James M. Loy ◽  
Jayathi Y. Murthy ◽  
Dhruv Singh

Nongray phonon transport solvers based on the Boltzmann transport equation (BTE) are being increasingly employed to simulate submicron thermal transport in semiconductors and dielectrics. Typical sequential solution schemes encounter numerical difficulties because of the large spread in scattering rates. For frequency bands with very low Knudsen numbers, strong coupling between other BTE bands result in slow convergence of sequential solution procedures. This is due to the explicit treatment of the scattering kernel. In this paper, we present a hybrid BTE-Fourier model which addresses this issue. By establishing a phonon group cutoff Knc, phonon bands with low Knudsen numbers are solved using a modified Fourier equation which includes a scattering term as well as corrections to account for boundary temperature slip. Phonon bands with high Knudsen numbers are solved using the BTE. A low-memory iterative solution procedure employing a block-coupled solution of the modified Fourier equations and a sequential solution of BTEs is developed. The hybrid solver is shown to produce solutions well within 1% of an all-BTE solver (using Knc = 0.1), but with far less computational effort. Speedup factors between 2 and 200 are obtained for a range of steady-state heat transfer problems. The hybrid solver enables efficient and accurate simulation of thermal transport in semiconductors and dielectrics across the range of length scales from submicron to the macroscale.


Author(s):  
Cristina H. Amon ◽  
Jayathi Y. Murthy ◽  
Sreekant V. J. Narumanchi

In modern microelectronics, where extreme miniaturization has led to feature sizes in the sub-micron and nanoscale range, Fourier diffusion has been found to be inadequate for the prediction of heat conduction. Over the past decade, the phonon Boltzmann transport equation (BTE) in the relaxation time approximation has been employed to make thermal predictions in dielectrics and semiconductors at micron and nanoscales. This paper presents a review of the BTE-based solution methods widely employed in the literature. Particular attention is given to the problem of self-heating (hotspot) in sub-micron transistors. First, the solution approaches based on the gray formulation of the BTE are presented. In this class of solution methods, phonons are characterized by one single group velocity and relaxation time. Phonon dispersion is not accounted for in any detail. This is the most widely employed approach in the literature. The semi-gray BTE approach, moments of the Boltzmann equation, the lattice Boltzmann approach, and the ballistic-diffusive approximation are presented. Models which incorporate greater details of phonon dispersion are also discussed. This includes a full phonon dispersion model developed recently by the authors. This full phonon dispersion model satisfies energy conservation, incorporates the different phonon modes, and well as the interactions between the different modes, and accounts for the frequency dependence for both the phonon group velocity and relaxation times. Results which illustrate the differences between some of these models reveal the importance of developing models that incorporate substantial details of phonon physics.


2017 ◽  
Vol 139 (10) ◽  
Author(s):  
Ajit K. Vallabhaneni ◽  
Liang Chen ◽  
Man P. Gupta ◽  
Satish Kumar

Several studies have validated that diffusive Fourier model is inadequate to model thermal transport at submicron length scales. Hence, Boltzmann transport equation (BTE) is being utilized to improve thermal predictions in electronic devices, where ballistic effects dominate. In this work, we investigated the steady-state thermal transport in a gallium nitride (GaN) film using the BTE. The phonon properties of GaN for BTE simulations are calculated from first principles—density functional theory (DFT). Despite parallelization, solving the BTE is quite expensive and requires significant computational resources. Here, we propose two methods to accelerate the process of solving the BTE without significant loss of accuracy in temperature prediction. The first one is to use the Fourier model away from the hot-spot in the device where ballistic effects can be neglected and then couple it with a BTE model for the region close to hot-spot. The second method is to accelerate the BTE model itself by using an adaptive model which is faster to solve as BTE for phonon modes with low Knudsen number is replaced with a Fourier like equation. Both these methods involve choosing a cutoff parameter based on the phonon mean free path (mfp). For a GaN-based device considered in the present work, the first method decreases the computational time by about 70%, whereas the adaptive method reduces it by 60% compared to the case where full BTE is solved across the entire domain. Using both the methods together reduces the overall computational time by more than 85%. The methods proposed here are general and can be used for any material. These approaches are quite valuable for multiscale thermal modeling in solving device level problems at a faster pace without a significant loss of accuracy.


Author(s):  
Keivan Etessam-Yazdani ◽  
Sadegh M. Sadeghipour ◽  
Mehdi Asheghi

The performance and reliability of sub-micron semiconductor transistors demands accurate modeling of electron and phonon transport at nanoscales. The continued downscaling of the critical dimensions, introduces hotspots, inside transistors, with dimensions much smaller than phonon mean free path. This phenomenon, known as localized heating effect, results in a relatively high temperature at the hotspot that cannot be predicted using heat diffusion equation. While the contribution of the localized heating effect to the total device thermal resistance is significant during the normal operation of transistors, it has even greater implications for the thermoelectrical behavior of the device during an electrostatic discharge (ESD) event. The Boltzmann transport equation (BTE) can be used to capture the ballistic phonon transport in the vicinity of a hot spot but many of the existing solutions are limited to the one-dimensional and simple geometry configurations. We report our initial progress in solving the two dimensional Boltzmann transport equation for a hot spot in an infinite media (silicon) with constant temperature boundary condition and uniform heat generation configuration.


2009 ◽  
Vol 1229 ◽  
Author(s):  
Thomas W Brown ◽  
Edward Hensel

AbstractThermal transport in crystalline materials at various length scales can be modeled by the Boltzmann transport equation (BTE). A statistical phonon transport (SPT) model is presented that solves the BTE in a statistical framework that incorporates a unique state-based phonon transport methodology. Anisotropy of the first Brillouin zone (BZ) is captured by utilizing directionally-dependent dispersion curves obtained from lattice dynamics calculations. A rigorous implementation of phonon energy and pseudo-momentum conservation is implemented in the ballistic thermal transport regime for a homogeneous silicon nanowire with adiabatic specular boundary conditions.


Author(s):  
Damian Terris ◽  
Karl Joulain ◽  
Denis Lemonnier

The temperature evolution prediction of silicon nanofilms and nanowires can be useful to safeguard high technology systems of its deterioration. The simulation of a level and a pulse in these nanostructures is then made with Boltzmann Transport Equation (BTE) resolution using the single time approximation. The Discrete Ordinate (DO) method helps to numerate the angle space. BTE is written in cylindrical coordinates which corresponds to wires. Therefore, the cylindrical plane is considered as an isotropic scattering to mimic a nanowire and then, as a specular reflexion (which conserve z momentum) to simulate a nanofilm. Using the axisymmetry done with a specular reflexion, the cylinder is two dimensionally discretized with a regular rectangular mesh.


Sign in / Sign up

Export Citation Format

Share Document