Dependence of Sliding Wear Resistance and Microhardness of Al-Spray Coating Layers on Substrate Conditions Using High-Velocity Oxygen Fuel (HVOF)

2008 ◽  
Vol 23 (7) ◽  
pp. 726-733 ◽  
Author(s):  
M. Abu-Aesh
2020 ◽  
Vol 2 (1) ◽  
pp. 25
Author(s):  
Mirosław Szala ◽  
Mariusz Walczak ◽  
Leszek Łatka ◽  
Kamil Gancarczyk

Bulk cobalt- and nickel-based metallic materials exhibit superior resistance to cavitation erosion and sliding wear. Thus, thermally deposited High-Velocity Oxygen Fuel (HVOF) coatings seem promising for increasing the wear resistance of the bulk metal substrate. However, the effect of chemical composition on the cavitation erosion and sliding wear resistance of M(Co,Ni)CrAlY and NiCrMo coatings has not yet been exhaustively studied. In this study, High-Velocity Oxygen Fuel (HVOF) coatings such as CoNiCrAlY, NiCoCrAlY, and NiCrMoFeCo were deposited on AISI 310 (X15CrNi25-20) steel coupons. The microstructure, hardness, phase composition and surface morphology of the as-sprayed coatings were examined. Cavitation erosion tests were conducted using the vibratory method in accordance with the ASTM G32 standard. Sliding wear was examined with the use of a ball-on-disc tribometer, and friction coefficients were measured. The mechanism of wear was identified with the scanning electron microscope equipped with an energy dispersive spectroscopy (SEM-EDS) method. In comparison to the NiCrMoFeCo coating, the CoNiCrAlY and NiCoCrAlY coatings have a lower sliding and cavitation wear resistance.


2019 ◽  
Vol 4 (2) ◽  
pp. 277
Author(s):  
Erie Martides ◽  
Candra Dewi Romadhona ◽  
Djoko Hadi Prajitno ◽  
Budi Prawara

Material SS316 seringkali digunakan untuk komponen yang bekerja pada temperatur tinggi dengan resiko mengalami oksidasi yang menyebabkan penurunan sifat material dan umur pakai dari komponen. Deposisi Metal Matrix Composite (MMC) NiCr+Cr3C2+Al2O3 dan NiCr+WC12Co+Al2O3 menggunakan metode High Velocity Oxygen Fuel (HVOF) thermal spray coating dengan parameter konstan dilakukan sebagai proses perlakuan pada permukaan SS316 untuk meningkatkan nilai kekerasan dan ketahanan terhadap oksidasi.  Tujuan penelitian ini adalah untuk mengetahui pengaruh proses oksidasi lapisan MMC pada material substrat SS316. Proses oksidasi dilakukan dengan variasi temperatur 500° dan 600°C, penahanan temperatur selama 6 jam, kemudian diteruskan dengan karakterisasi serta perhitungan laju oksidasi. Hasil penelitian menunjukkan spesimen MMC NiCr+Cr3C2+Al2O3 yang dilakukan proses oksidasi pada suhu 500°C memiliki laju oksidasi terendah yaitu 6,67 x 10-7 gram/mm2 jam. 


Author(s):  
Zhetcho Doinov Kalitchin ◽  
Mara Krumova Kandeva ◽  
Yana Petrova Stoyanova

This research work studies the characteristics of wear and wear resistance of composite powder coatings, deposited by high-velocity oxygen fuel, which contain composite mixtures Ni-Cr-B-Si having different chromium concentrations – 9.9%; 13.2%; 14%; 16% and 20% , at one and the same size of the particles and the same content of the remaining elements. The coating of 20% Cr does not contain B and Si. Out of each powder, composite coatings have been prepared without any preliminary thermal treatment of the substrate and with preliminary thermal treatment of the substrate up to 650оС. The coatings have been tested under identical conditions of dry friction over a surface of solid firmly attached abrasive particles using the tribological testing device „Pin-on-disk“. Results have been obtained and the dependences of the hardness, mass wear, intensity of the wearing process, absolute and relative wear resistance on the Cr concentration under identical conditions of friction. It has been found out that for all the coatings the preliminary thermal treatment of the substrate leads to a decrease in the wear intensity. Upon increasing Cr concentration the wear intensity diminishes and it reaches minimal values at 16% Cr. In the case of coatings having 20% Cr concentration, the wear intensity is increased, which is due to the absence of the components B and Si in the composite mixture, whereupon no inter-metallic structures are formed having high hardness and wear resistance. The obtained results have no analogues in the current literature and they have not been published by the authors.


2018 ◽  
Vol 929 ◽  
pp. 142-149 ◽  
Author(s):  
Myrna Ariati Mochtar ◽  
Wahyuaji Narottama Putra ◽  
Raditya Perdana Rachmansyah

Tube boiler operating condition initiates common problems that can occur as a problem in the wear resistance material. It leads to a decreased function of the material so that it is necessary to repair or replacement. High Velocity Oxygen Fuel (HVOF) is regarded as one of the effective methods to increase the wear resistance of the material. In this study, the materials were ASTM SA213-T91 as a material commonly used for boiler tube and JIS G 3132 SPHT-2 as an alternative material. In the early stages, both of specimens were given initial surface heating with temperature variations 0, 50, 100 and 150oC. The materials were then coated with Stellite-1 using HVOF method. The material were then characterized for the microstructure, porosity, hardness distribution, and wear resistant. The results showed that the coating Stellite-1 as a top coat with HVOF method can improve the performance of the material. Microhardness increases from 220 HV to 770 HV on ASTM SA213-T91, while on the substrate JIS G 3132 SPHT-2 the microhardness increased from 120 HV to 750 HV. Better wear resistance was achieved with increasing preheating [1]. Wear resistance of the materials increased from the range 3.69x10-7at 0°C preheating up to 0.89x10-7on a specimen with initial surface heating 150oC. Porosity also decreases with the increasing preheating temperature.


2012 ◽  
Vol 518-523 ◽  
pp. 3984-3988
Author(s):  
Bai Lin Zha ◽  
Xiao Jing Yuan ◽  
De Wen Wang

Environmental protection and worker safety measures against the extensively used hard chrome plating (EHC) is becoming more stringent, which leads to the development and application of alternative technology. As one of the most promising replacement technology of EHC, WC/Co coatings deposited by High Velocity Oxygen Fuel (HVOF) have well performances in corrosion and wear resistance. The paper analyzed technical characteristics, property and cost of EHC and HVOF deposited WC-Co coatings, while results show that performance of HVOF sprayed WC-Co coatings is superior or equal to EHC with much higher expense, so current replacement of EHC by HVOF centers airplane and military arm field which have relatively higher profit.


2017 ◽  
Vol 728 ◽  
pp. 105-110
Author(s):  
Vita Susanti ◽  
Erie Martides ◽  
Midriem Mirdanies ◽  
Budi Prawara ◽  
Ant. Ardath Kristi ◽  
...  

Wear and corrosion are problems prevalent in the industrialized world. One way to overcome this matter is the process of coating with a thermal spray coating. The coating process is categorized into two processes based on the heat source, i.e., combustion and electric. One example of combustion process is the high-velocity oxygen fuel (HVOF). The HVOF system which is operated manually has been studied in previous works. Computerized HVOF system is developed and manufactured in this study to improve reproducibility of coating and safety of operator. ATMega16 microcontroller was connected with several sensors (oxygen mass flow controller, nitrogen mass flow controller, propane mass flow controller, and pressure sensor), and Visual Studio.Net 2013 was used to create a graphic user interface (GUI). Based on test results obtained, it was found that the GUI successfully communicated using serial communications and could access the input/output (I/O) required by the microcontroller. Combinaton of gas mass flow controller and pressure sensors result in precise control of oxy-fuel combustion process.


2019 ◽  
Vol 11 (5) ◽  
pp. 685-693 ◽  
Author(s):  
Zhidan Zhou ◽  
Xiubing Liang ◽  
Yongxiong Chen ◽  
Baolong Shen ◽  
Junchao Shang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document