Effects of Grinding Process Parameters and Coolants on the Grindability of GFRP Laminates

2013 ◽  
Vol 28 (10) ◽  
pp. 1071-1076 ◽  
Author(s):  
P. Chockalingam ◽  
Kok Chee Kuang ◽  
Thoguluva Raghavan Vijayaram
2009 ◽  
Vol 626-627 ◽  
pp. 23-28
Author(s):  
Wei Xing Xu ◽  
Yong Bo Wu ◽  
Takashi Sato ◽  
Wei Min Lin

In our previous study, a new centerless grinding method using surface grinder was proposed. This paper describes a simulation method for investigating the workpiece rounding process in which a model taking the elastic deformation of the machine into consideration is created, and revealing how the process parameters affect the machining accuracy in the new grinding technique. In addition, a practice way to determine the machining-elasticity parameter showing the elastic deformation is developed. The simulation results are compared to show the effect of process parameters on the machining accuracy.


2008 ◽  
Vol 571-572 ◽  
pp. 27-32 ◽  
Author(s):  
Volkan Güley ◽  
A. Erman Tekkaya ◽  
Turhan Savaş ◽  
Feridun Özhan

Experimental investigation of residual stresses after heat treatment and grinding processes in the production of ball bearing rings has been carried out. The residual stresses were measured by X-ray diffraction method utilizing chromium radiation, which has an average penetration depth of 5 μm incident on 100Cr6 (AISI-E52100) ball bearing steel. The process parameters of heat treatment and grinding processes were varied so as to represent the extreme values that can be applied in the respective processes. Hardness and percent retained austenite limit the heat treatment process parameters; while roundness, surface roughness and form the grinding process. Tensile surface residual stresses on the raceway of ball bearing rings changes to compression after grinding in both circumferential and axial directions. In grinding relatively higher compressive stresses were measured in axial direction compared to the circumferential direction. This experimental investigation also showed that the influence of heat treatment process parameters on the magnitude and distribution of residual stresses survived even after grinding process; i.e. heat treatment and grinding processes cannot be evaluated independently in process design for favourable residual stresses.


2015 ◽  
Vol 813-814 ◽  
pp. 332-336
Author(s):  
R.A. Aravind ◽  
Shivakumar Ganesh ◽  
Syed Mohammed Yasir ◽  
G. Madhan Mohan ◽  
Vijayan Krishnaraj ◽  
...  

This paper presents an experimental study on the diametrical overcut and taper obtained during the machining of micro holes by electro-discharge machining (EDM). Many trials were taken by machining a 2.0 mm electrolytic copper rod to 0.50 mm under various conditions to analyse the effect of process parameters by wire electric discharge grinding process (WEDG). The optimum process parameters were determined by Taguchi’s method. Then a set of electrodes were produced with the determined optimum process parameters and were used to machine micro holes on Ti-6Al-4V alloy. The diameters of the holes were measured and the effects of various parameters were analysed for the variation in taper and diametrical overcut. The experimental results were analysed using analysis of variance approach.


2017 ◽  
Vol 8 (2) ◽  
pp. 121 ◽  
Author(s):  
Bahman Azarhoushang ◽  
Thomas Stehle ◽  
Heike Kitzig Frank ◽  
Hans Christian Möhring

Author(s):  
Guijian Xiao ◽  
Yun Huang ◽  
Ying Liu ◽  
Quan Li ◽  
Wentao Dai

A blisk is one of the key parts of an aero-engine, whose surface processing quality directly affects aero-engine performance. Different degrees of vibration occur during the process of new open belt grinding which seriously affect the precision of the dimensions and the surface quality of the entire blade profile. With the aim of addressing this problem, this study constructed a physical model of blisk belt grinding, analysed the low-rigidity characteristics of the grinding system, and researched the vibratory mechanism of the blisk belt grinding system based on a dynamic analysis method. In addition, the factors affecting the stability of the grinding process and the stability conditions of the grinding were considered. Then, the belt grinding process of a blade surface was simulated through a numerical method. The technological parameters were quantified for different conditions of the blisk belt grinding vibration. The optimal combination of process parameters was obtained. Finally, the optimised process parameters were validated experimentally. The research demonstrates that vibration from blisk belt grinding is related to the process parameters as follows, in the order of the greatest influence: the grinding pressure, belt velocity, feed speed, and contact wheel hardness. After optimisation, the cross-sectional profile is 0.031–0.041 mm and the surface roughness is 0.1–0.2 μm; the surface is smoother and has better consistency.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3325
Author(s):  
Lihui Zhang ◽  
Lei Zou ◽  
Donghui Wen ◽  
Xudong Wang ◽  
Fanzhi Kong ◽  
...  

This study investigates the effect of process parameters on neurosurgical bone grinding performance using a miniature surgical diamond wheel. Bone grinding is an important procedure in the expanded endonasal approach for removing the cranial bone and access to the skull base tumor via nasal corridor. Heat and force are generated during the grinding process, which may cause thermal and mechanical damage to the adjacent tissues. This study investigates the effect of grinding process parameters (including the depth of cut, feed rate, and spindle speed) on the bone grinding performance using temperature and force measurement sensors in order to optimize the grinding process. An orthogonal experimental design with a standard orthogonal array, L9 (33), is selected with each parameter in three levels. The experimental results have been statistically analyzed using the range and variance analysis methods in order to determine the importance order of the process parameters. The results indicate that the effect of the cutting depth on the grinding temperature and normal force is the largest, while the effect of the spindle speed on the tangential force is the largest. A high spindle speed would make the temperature rise to a certain extent; however, it significantly reduces the grinding force. At a certain spindle speed, a lower depth of cut and feed rate help to reduce the grinding temperature and force.


Sign in / Sign up

Export Citation Format

Share Document