Professional and High-Level Gamers: Differences in Performance, Muscle Activity, and Hand Kinematics for Different Mice

Author(s):  
Guangchuan Li ◽  
Mengcheng Wang ◽  
Federico Arippa ◽  
Alan Barr ◽  
David Rempel ◽  
...  
1999 ◽  
Vol 86 (5) ◽  
pp. 1663-1669 ◽  
Author(s):  
A. L. Perlman ◽  
P. M. Palmer ◽  
T. M. McCulloch ◽  
D. J. Vandaele

The durations and temporal relationships of electromyographic activity from the submental complex, superior pharyngeal constrictor, cricopharyngeus, thyroarytenoid, and interarytenoid muscles were examined during swallowing of saliva and of 5- and 10-ml water boluses. Bipolar, hooked-wire electrodes were inserted into all muscles except for the submental complex, which was studied with bipolar surface electrodes. Eight healthy, normal, subjects produced five swallows of each of three bolus volumes for a total of 120 swallows. The total duration of electromyographic activity during the pharyngeal stage of the swallow did not alter with bolus condition; however, specific muscles did show a volume-dependent change in electromyograph duration and time of firing. Submental muscle activity was longest for saliva swallows. The interarytenoid muscle showed a significant difference in duration between the saliva and 10-ml water bolus. Finally, the interval between the onset of laryngeal muscle activity (thyroarytenoid, interarytenoid) and of pharyngeal muscle firing patterns (superior pharyngeal constrictor onset, cricopharyngeus offset) decreased as bolus volume increased. The pattern of muscle activity associated with the swallow showed a high level of intrasubject agreement; the presence of somewhat different patterns among subjects indicated a degree of population variance.


2010 ◽  
Vol 103 (1) ◽  
pp. 564-572 ◽  
Author(s):  
J. Andrew Pruszynski ◽  
Timothy P. Lillicrap ◽  
Stephen H. Scott

Correlations between neural activity in primary motor cortex (M1) and arm kinematics have recently been shown to be temporally extensive and spatially complex. These results provide a sophisticated account of M1 processing and suggest that M1 neurons encode high-level movement trajectories, termed “pathlets.” However, interpreting pathlets is difficult because the mapping between M1 activity and arm kinematics is indirect: M1 activity can generate movement only via spinal circuitry and the substantial complexities of the musculoskeletal system. We hypothesized that filter-like complexities of the musculoskeletal system are sufficient to generate temporally extensive and spatially complex correlations between motor commands and arm kinematics. To test this hypothesis, we extended the computational and experimental method proposed for extracting pathlets from M1 activity to extract pathlets from muscle activity. Unlike M1 activity, it is clear that muscle activity does not encode arm kinematics. Accordingly, any spatiotemporal correlations in muscle pathlets can be attributed to musculoskeletal complexities rather than explicit higher-order representations. Our results demonstrate that extracting muscle pathlets is a robust and repeatable process. Pathlets extracted from the same muscle but different subjects or from the same muscle on different days were remarkably similar and roughly appropriate for that muscle's mechanical action. Critically, muscle pathlets included extensive spatiotemporal complexity, including kinematic features before and after the present muscle activity, similar to that reported for M1 neurons. These results suggest the possibility that M1 pathlets at least partly reflect the filter-like complexities of the periphery rather than high-level representations.


Author(s):  
Andrés Montaño ◽  
Raúl Suárez

Purpose This paper aims to present a procedure to change the orientation of a grasped object using dexterous manipulation. The manipulation is controlled by teleoperation in a very simple way, with the commands introduced by an operator using a keyboard. Design/methodology/approach The paper shows a teleoperation scheme, hand kinematics and a manipulation strategy to manipulate different objects using the Schunk Dexterous Hand (SDH2). A state machine is used to model the teleoperation actions and the system states. A virtual link is used to include the contact point on the hand kinematics of the SDH2. Findings Experiments were conducted to evaluate the proposed approach with different objects, varying the initial grasp configuration and the sequence of actions commanded by the operator. Originality/value The proposed approach uses a shared telemanipulation schema to perform dexterous manipulation; in this schema, the operator sends high-level commands and a local system uses this information, jointly with tactile measurements and the current status of the system, to generate proper setpoints for the low-level control of the fingers, which may be a commercial close one. The main contribution of this work is the mentioned local system, simple enough for practical applications and robust enough to avoid object falls.


Author(s):  
DJUWARI DJUWARI ◽  
DINESH K. KUMAR ◽  
SRIDHAR P. ARJUNAN ◽  
GANESH R. NAIK

Surface electromyogram (SEMG) has numerous applications, but the presence of artifacts and cross talk especially at low level of muscle activity makes the recordings unreliable. Spectral and temporal overlap can make the removal of artifacts and noise, or separation of relevant signals from other bioelectric signals extremely difficult. Identification of hand gestures using low level of SEMG is one application that has a number of applications but the presence of high level of cross talk makes such an application highly unreliable. Individual muscles may be considered as independent at the local level and this makes an argument for separating the signals using independent component analysis (ICA). In the recent past, due to the easy availability of ICA tools, a number of researchers have attempted to use ICA for this application. This paper reports research conducted to evaluate the use of ICA for the separation of muscle activity and removal of the artifacts from SEMG. It discusses some of the conditions that could affect the reliability of the separation and evaluates issues related to the properties of the signals and a number of sources. This paper also identifies the lack of suitable measure of quality of separation for bioelectric signals and it recommends and tests a more robust measure of separation. This paper also proposes semi-blind ICA approach with the combination of prior knowledge of SEMG sources with ICA to identify hand gestures using low level of SEMG recordings. The theoretical analysis and experimental results demonstrate that ICA is suitable for SEMG signals. The results demonstrate the limitations of such applications due to the inability of the system to identify the correct order and magnitude of the signals. This paper determines the suitability of the use of error between estimated and actual mixing matrix as a mean for identifying the quality of separation of the output. This work also demonstrates that semi-blind ICA can accurately identify complex hand gestures from the low-level SEMG recordings.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Néstor J. Jarque-Bou ◽  
Margarita Vergara ◽  
Joaquín L. Sancho-Bru ◽  
Verónica Gracia-Ibáñez ◽  
Alba Roda-Sales

Abstract Linking hand kinematics and forearm muscle activity is a challenging and crucial problem for several domains, such as prosthetics, 3D modelling or rehabilitation. To advance in this relationship between hand kinematics and muscle activity, synchronised and well-defined data are needed. However, currently available datasets are scarce, and the presented tasks and data are often limited. This paper presents the KIN-MUS UJI Dataset that contains 572 recordings with anatomical angles and forearm muscle activity of 22 subjects while performing 26 representative activities of daily living. This dataset is, to our knowledge, the biggest currently available hand kinematics and muscle activity dataset to focus on goal-oriented actions. Data were recorded using a CyberGlove instrumented glove and surface EMG electrodes, both properly synchronised. Eighteen hand anatomical angles were obtained from the glove sensors by a validated calibration procedure. Surface EMG activity was recorded from seven representative forearm areas. The statistics verified that data were not affected by the experimental procedures and were similar to the data acquired under real-life conditions.


1997 ◽  
Vol 83 (2) ◽  
pp. 591-598 ◽  
Author(s):  
Maurice Beaumont ◽  
Damien Lejeune ◽  
Henri Marotte ◽  
Alain Harf ◽  
Frédéric Lofaso

Beaumont, Maurice, Damien Lejeune, Henri Marotte, Alain Harf, and Frédéric Lofaso. Effects of chest wall counterpressures on lung mechanics under high levels of CPAP in humans. J. Appl. Physiol. 83(2): 591–598, 1997.—We assessed the respective effects of thoracic (TCP) and abdominal/lower limb (ACP) counterpressures on end-expiratory volume (EEV) and respiratory muscle activity in humans breathing at 40 cmH2O of continuous positive airway pressure (CPAP). Expiratory activity was evaluated on the basis of the inspiratory drop in gastric pressure (ΔPga) from its maximal end-expiratory level, whereas inspiratory activity was evaluated on the basis of the transdiaphragmatic pressure-time product (PTPdi). CPAP induced hyperventilation (+320%) and only a 28% increase in EEV because of a high level of expiratory activity (ΔPga = 24 ± 5 cmH2O), contrasting with a reduction in PTPdi from 17 ± 2 to 9 ± 7 cmH2O ⋅ s−1 ⋅ cycle−1during 0 and 40 cmH2O of CPAP, respectively. When ACP, TCP, or both were added, hyperventilation decreased and PTPdi increased (19 ± 5, 21 ± 5, and 35 ± 7 cmH2O ⋅ s−1 ⋅ cycle−1, respectively), whereas ΔPga decreased (19 ± 6, 9 ± 4, and 2 ± 2 cmH2O, respectively). We concluded that during high-level CPAP, TCP and ACP limit lung hyperinflation and expiratory muscle activity and restore diaphragmatic activity.


Author(s):  
David P. Bazett-Jones ◽  
Mark L. Brown

A multisubunit RNA polymerase enzyme is ultimately responsible for transcription initiation and elongation of RNA, but recognition of the proper start site by the enzyme is regulated by general, temporal and gene-specific trans-factors interacting at promoter and enhancer DNA sequences. To understand the molecular mechanisms which precisely regulate the transcription initiation event, it is crucial to elucidate the structure of the transcription factor/DNA complexes involved. Electron spectroscopic imaging (ESI) provides the opportunity to visualize individual DNA molecules. Enhancement of DNA contrast with ESI is accomplished by imaging with electrons that have interacted with inner shell electrons of phosphorus in the DNA backbone. Phosphorus detection at this intermediately high level of resolution (≈lnm) permits selective imaging of the DNA, to determine whether the protein factors compact, bend or wrap the DNA. Simultaneously, mass analysis and phosphorus content can be measured quantitatively, using adjacent DNA or tobacco mosaic virus (TMV) as mass and phosphorus standards. These two parameters provide stoichiometric information relating the ratios of protein:DNA content.


Author(s):  
J. S. Wall

The forte of the Scanning transmission Electron Microscope (STEM) is high resolution imaging with high contrast on thin specimens, as demonstrated by visualization of single heavy atoms. of equal importance for biology is the efficient utilization of all available signals, permitting low dose imaging of unstained single molecules such as DNA.Our work at Brookhaven has concentrated on: 1) design and construction of instruments optimized for a narrow range of biological applications and 2) use of such instruments in a very active user/collaborator program. Therefore our program is highly interactive with a strong emphasis on producing results which are interpretable with a high level of confidence.The major challenge we face at the moment is specimen preparation. The resolution of the STEM is better than 2.5 A, but measurements of resolution vs. dose level off at a resolution of 20 A at a dose of 10 el/A2 on a well-behaved biological specimen such as TMV (tobacco mosaic virus). To track down this problem we are examining all aspects of specimen preparation: purification of biological material, deposition on the thin film substrate, washing, fast freezing and freeze drying. As we attempt to improve our equipment/technique, we use image analysis of TMV internal controls included in all STEM samples as a monitor sensitive enough to detect even a few percent improvement. For delicate specimens, carbon films can be very harsh-leading to disruption of the sample. Therefore we are developing conducting polymer films as alternative substrates, as described elsewhere in these Proceedings. For specimen preparation studies, we have identified (from our user/collaborator program ) a variety of “canary” specimens, each uniquely sensitive to one particular aspect of sample preparation, so we can attempt to separate the variables involved.


2020 ◽  
Vol 29 (4) ◽  
pp. 738-761
Author(s):  
Tess K. Koerner ◽  
Melissa A. Papesh ◽  
Frederick J. Gallun

Purpose A questionnaire survey was conducted to collect information from clinical audiologists about rehabilitation options for adult patients who report significant auditory difficulties despite having normal or near-normal hearing sensitivity. This work aimed to provide more information about what audiologists are currently doing in the clinic to manage auditory difficulties in this patient population and their views on the efficacy of recommended rehabilitation methods. Method A questionnaire survey containing multiple-choice and open-ended questions was developed and disseminated online. Invitations to participate were delivered via e-mail listservs and through business cards provided at annual audiology conferences. All responses were anonymous at the time of data collection. Results Responses were collected from 209 participants. The majority of participants reported seeing at least one normal-hearing patient per month who reported significant communication difficulties. However, few respondents indicated that their location had specific protocols for the treatment of these patients. Counseling was reported as the most frequent rehabilitation method, but results revealed that audiologists across various work settings are also successfully starting to fit patients with mild-gain hearing aids. Responses indicated that patient compliance with computer-based auditory training methods was regarded as low, with patients generally preferring device-based rehabilitation options. Conclusions Results from this questionnaire survey strongly suggest that audiologists frequently see normal-hearing patients who report auditory difficulties, but that few clinicians are equipped with established protocols for diagnosis and management. While many feel that mild-gain hearing aids provide considerable benefit for these patients, very little research has been conducted to date to support the use of hearing aids or other rehabilitation options for this unique patient population. This study reveals the critical need for additional research to establish evidence-based practice guidelines that will empower clinicians to provide a high level of clinical care and effective rehabilitation strategies to these patients.


Sign in / Sign up

Export Citation Format

Share Document