Effect of High Hydrostatic Pressure Applied Before Cryopreservation on the Survival Rate and Quality of Porcine Mesenchymal Stem Cells After Thawing

2017 ◽  
Vol 29 (4) ◽  
pp. 283-292 ◽  
Author(s):  
Joanna Romanek ◽  
Jolanta Opiela ◽  
Daniel Lipiński ◽  
Zdzisław Smorąg
2018 ◽  
Vol 18 (1) ◽  
pp. 69-86
Author(s):  
Joanna Romanek ◽  
Jolanta Opiela ◽  
Zdzisław Smorąg

AbstractThe aim of the present study was to examine the influence of two varied high hydrostatic pressure (HHP) values on the apoptosis (assessing caspase-8, survivin, CAD, Bax, BclxL and BclxS) and functional activity (using cocultures with bovine embryos) of porcine mesenchymal stem cells (pBMSCs). pBMSCs were isolated from porcine bone marrow and cultured in vitro. Before cryopreservation and storage in liquid nitrogen, pBMSCs were subjected to HHP values of 40 MPa and 60 MPa for 1 h at 24°C. After thawing, the cells were analysed for caspase-8 activity and protein expression of survivin, CAD, Bax, BclxL and BclxS. To indirectly test the influence of HHP on the functional activity of pBMSCs, in vitro maturated bovine oocytes were fertilized in vitro, and the obtained embryos were cultured under 4 different conditions: 1. monoculture in SOF medium; 2. coculture with pBMSCs in SOF medium; 3. coculture with pBMSCs subjected to 40 MPa HHP in SOF medium and 4. coculture with pBMSCs subjected to 60 MPa HHP in SOF medium. The quality of the developed blastocysts was analysed by TUNEL assay. HHP did not induce apoptosis in pBMSCs, as no significant difference was noted in the expression of any of the analysed apoptosis- related proteins between pBMSCs subjected to HHP (40 MPa or 60 MPa) and control. The highest number of obtained blastocysts was observed when the embryos were cultured in SOF. A highly significant difference (P<0.005) was noted between embryos cultured in SOF and embryos cultured in the presence of pBMSCs subjected to 60 MPa HHP or untreated pBMSCs. A significant difference (P<0.05) was noted between embryos cultured in SOF and embryos cultured in the presence of pBMSCs subjected to 40 MPa HHP. In conclusion, HHP does not induce apoptosis in pBMSCs. The obtained results of the blastocysts cocultured in vitro with pBMSCs (HHP-treated and untreated cells) imply that coculture with pBMSCs has a negative impact on the developmental rates of blastocysts.


2021 ◽  
pp. 036354652098681
Author(s):  
Monketh Jaibaji ◽  
Rawan Jaibaji ◽  
Andrea Volpin

Background: Osteochondral lesions are a common clinical problem and their management has been historically challenging. Mesenchymal stem cells have the potential to differentiate into chondrocytes and thus restore hyaline cartilage to the defect, theoretically improving clincal outcomes in these patients. They can also be harvested with minimal donor site morbidity. Purpose: To assess the clinical and functional outcomes of mesenchymal stem cell implantation to treat isolated osteochondral defects of the knee. A secondary purpose is to assess the quality of the current available evidence as well as the radiological and histological outcomes. We also reviewed the cellular preparation and operative techniques for implantation. Study Design: Systematic review. Methods: A comprehensive literature search of 4 databases was carried out: CINAHL, Embase, MEDLINE, and PubMed. We searched for clinical studies reporting the outcomes on a minimum of 5 patients with at least 12 months of follow-up. Clinical, radiological, and histological outcomes were recorded. We also recorded demographics, stem cell source, culture technique, and operative technique. Methodological quality of each study was assessed using the modified Coleman methodology score, and risk of bias for the randomized controlled studies was assessed using the Cochrane Collaboration tool. Results: Seventeen studies were found, encompassing 367 patients. The mean patient age was 35.1 years. Bone marrow was the most common source of stem cells utilized. Mesenchymal stem cell therapy consistently demonstrated good short- to medium-term outcomes in the studies reviewed with no serious adverse events being recorded. There was significant heterogeneity in cell harvesting and preparation as well as in the reporting of outcomes. Conclusion: Mesenchymal stem cells demonstrated a clinically relevant improvement in outcomes in patients with osteochondral defects of the knee. More research is needed to establish an optimal treatment protocol, long-term outcomes, and superiority over other therapies. Registration: CRD42020179391 (PROSPERO).


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Ilaria Roato ◽  
Daniela Alotto ◽  
Dimas Carolina Belisario ◽  
Stefania Casarin ◽  
Mara Fumagalli ◽  
...  

Osteoarthritis is characterized by loss of articular cartilage also due to reduced chondrogenic activity of mesenchymal stem cells (MSCs) from patients. Adipose tissue is an attractive source of MSCs (ATD-MSCs), representing an effective tool for reparative medicine, particularly for treatment of osteoarthritis, due to their chondrogenic and osteogenic differentiation capability. The treatment of symptomatic knee arthritis with ATD-MSCs proved effective with a single infusion, but multiple infusions could be also more efficacious. Here we studied some crucial aspects of adipose tissue banking procedures, evaluating ATD-MSCs viability, and differentiation capability after cryopreservation, to guarantee the quality of the tissue for multiple infusions. We reported that the presence of local anesthetic during lipoaspiration negatively affects cell viability of cryopreserved adipose tissue and cell growth of ATD-MSCs in culture. We observed that DMSO guarantees a faster growth of ATD-MSCs in culture than trehalose. At last, ATD-MSCs derived from fresh and cryopreserved samples at −80°C and −196°C showed viability and differentiation ability comparable to fresh samples. These data indicate that cryopreservation of adipose tissue at −80°C and −196°C is equivalent and preserves the content of ATD-MSCs in Stromal Vascular Fraction (SVF), guaranteeing the differentiation ability of ATD-MSCs.


2009 ◽  
Vol 132 (2) ◽  
Author(s):  
Ricarda Hess ◽  
Timothy Douglas ◽  
Kenneth A. Myers ◽  
Barbe Rentsch ◽  
Claudia Rentsch ◽  
...  

Human mesenchymal stem cells (hMSCs) from bone marrow are considered a promising cell source for bone tissue engineering applications because of their ability to differentiate into cells of the osteoblastic lineage. Mechanical stimulation is able to promote osteogenic differentiation of hMSC; however, the use of hydrostatic pressure (HP) has not been well studied. Artificial extracellular matrices containing collagen and chondroitin sulfate (CS) have promoted the expression of an osteoblastic phenotype by hMSCs. However, there has been little research into the combined effects of biochemical stimulation by matrices and simultaneous mechanical stimulation. In this study, artificial extracellular matrices generated from collagen and/or CS were coated onto polycaprolactone-co-lactide substrates, seeded with hMSCs and subjected to cyclic HP at various time points during 21 days after cell seeding to investigate the effects of biochemical, mechanical, and combined biochemical and mechanical stimulations. Cell differentiation was assessed by analyzing the expression of alkaline phosphatase (ALP) at the protein- and mRNA levels, as well as for calcium accumulation. The timing of HP stimulation affected hMSC proliferation and expression of ALP activity. HP stimulation after 6 days was most effective at promoting ALP activity. CS-containing matrices promoted the osteogenic differentiation of hMSCs. A combination of both CS-containing matrices and cyclic HP yields optimal effects on osteogenic differentiation of hMSCs on scaffolds compared with individual responses.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1872
Author(s):  
Huipeng Liu ◽  
Yiyuan Xu ◽  
Shuyu Zu ◽  
Xuee Wu ◽  
Aimin Shi ◽  
...  

In meat processing, changes in the myofibrillar protein (MP) structure can affect the quality of meat products. High hydrostatic pressure (HHP) has been widely utilized to change the conformational structure (secondary, tertiary and quaternary structure) of MP so as to improve the quality of meat products. However, a systematic summary of the relationship between the conformational structure (secondary and tertiary structure) changes in MP, gel properties and product quality under HHP is lacking. Hence, this review provides a comprehensive summary of the changes in the conformational structure and gel properties of MP under HHP and discusses the mechanism based on previous studies and recent progress. The relationship between the spatial structure of MP and meat texture under HHP is also explored. Finally, we discuss considerations regarding ways to make HHP an effective strategy in future meat manufacturing.


Foods ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 218 ◽  
Author(s):  
Xiaoping Feng ◽  
Zhongyu Zhou ◽  
Xiaoqiong Wang ◽  
Xiufang Bi ◽  
Yuan Ma ◽  
...  

Changes in the microbial, physicochemical, and sensory properties of blended strawberry–apple–lemon juice were investigated to comparatively assess the influence of three processing treatments, namely high hydrostatic pressure (HHP) (500 MPa/15 min/20 °C), ultrasound (US) (376 W/10 min/35 °C), and heat treatment (HT) (86 °C/1 min) over 12 days of storage at 4 °C. The results showed that the total aerobic bacteria (TAB) counts in the HHP-, US-, and HT-treated juice blends were less than 2 log10 CFU/mL, the yeast and mold (Y & M) counts were less than 1.3 log10 CFU/mL, and the coliforms most probable number (MPN/100 mL) was less than 3 after 10 days at 4 °C. Anthocyanins were maintained by HHP, but decreased by 16% and 12% after US and HT, respectively. Total phenols increased by 18% and 7% after HHP and US, respectively, while they were maintained by the HT. Furthermore, better maintenance of total phenols, total anthocyanins, ascorbic acid, antioxidant capacity, color, and sensory values were observed in the HHP-treated juice blend stored for 10 days at 4 °C, compared to both the US- and HT-treated samples. Therefore, HHP was proposed to be a better processing technology for juice blend.


Sign in / Sign up

Export Citation Format

Share Document