Membrane spanners based on a dimeric α,γ-cyclic peptide core

2020 ◽  
Vol 32 (4) ◽  
pp. 239-246
Author(s):  
Alberto Fuertes ◽  
Manuel Amorín ◽  
Juan R. Granja
Keyword(s):  
2012 ◽  
Vol 8 ◽  
pp. 1344-1351 ◽  
Author(s):  
James R Cochrane ◽  
Dong Hee Yoon ◽  
Christopher S P McErlean ◽  
Katrina A Jolliffe

The cyclic peptide core of the antifungal and antibiotic cyclic depsipeptide LI-F04a was synthesised by using a modified Yamaguchi macrolactonization approach. Alternative methods of macrolactonization (e.g., Corey–Nicolaou) resulted in significant epimerization of the C-terminal amino acid during the cyclization reaction. The D-stereochemistry of the alanine residue in the naturally occurring cyclic peptide may be required for the antifungal activity of this natural product.


Planta Medica ◽  
2008 ◽  
Vol 74 (03) ◽  
Author(s):  
HMTB Herath ◽  
SI Khan ◽  
B Tekwani ◽  
NPD Nanayakkara

2020 ◽  
Author(s):  
Salvador Guardiola ◽  
Monica Varese ◽  
Xavier Roig ◽  
Jesús Garcia ◽  
Ernest Giralt

<p>NOTE: This preprint has been retracted by consensus from all authors. See the retraction notice in place above; the original text can be found under "Version 1", accessible from the version selector above.</p><p><br></p><p>------------------------------------------------------------------------</p><p><br></p><p>Peptides, together with antibodies, are among the most potent biochemical tools to modulate challenging protein-protein interactions. However, current structure-based methods are largely limited to natural peptides and are not suitable for designing target-specific binders with improved pharmaceutical properties, such as macrocyclic peptides. Here we report a general framework that leverages the computational power of Rosetta for large-scale backbone sampling and energy scoring, followed by side-chain composition, to design heterochiral cyclic peptides that bind to a protein surface of interest. To showcase the applicability of our approach, we identified two peptides (PD-<i>i</i>3 and PD-<i>i</i>6) that target PD-1, a key immune checkpoint, and work as protein ligand decoys. A comprehensive biophysical evaluation confirmed their binding mechanism to PD-1 and their inhibitory effect on the PD-1/PD-L1 interaction. Finally, elucidation of their solution structures by NMR served as validation of our <i>de novo </i>design approach. We anticipate that our results will provide a general framework for designing target-specific drug-like peptides.<i></i></p>


2020 ◽  
Vol 17 (5) ◽  
pp. 631-646
Author(s):  
Ravi D. Sharma ◽  
Jainendra Jain ◽  
Ratan L. Khosa

Background: In spite of current progress in treatment methods, cancer is a major source of morbidity and death rate all over the world. Traditional chemotherapeutic agents aim to divide cancerous cells, are often associated with deleterious side effects to healthy cells and tissues. Host defense peptides Cecropin A and B obtained from insects are capable to lyses various types of human cancer cells at peptide concentrations which are not fatal to normal eukaryotic cells. Methods: In the present work we have designed short chain α-helical linear and cyclic peptide from cecropin A having same cationic charge, hydrophobicity and helicity. Synthesis of designed novel short chain linear (10) and cyclic compound (12) was accomplished by using solution phase method. All the coupling reactions were carried out by using dicyclohexylcarbodiimide (DCC) as the coupling reagent at room temperature in the presence of N-methylmorpholine (NMM) as the base. The Structure of newly synthesized peptidse were elucidated by 1H-NMR, 13C-NMR, FT-IR, FABMS and elemental analysis data.Cytotoxicity of synthesized compound was tested against Dalton’s Lymphoma Ascites (DLA), Ehrlich’s Ascites Carcinoma (EAC) and MCF-7 cell lines by using MTT assay and 5-FU as reference compound. Results: From biological assessment,it was found that short chain cyclicpeptide12 showed high level of cytotoxic activity against DLA and EAC cell lines. Conclusion: By utilizing a structure-based rational approach to anticancer peptide design from cecropin A, we were able to develop short chain linear and cyclic peptides having same charge, hydrophobicity and with improved activity. Systematically removing amino acids, we were able to retaining peptide charge and hydrophobicity/hydrophilicity in linear and cyclic peptide which results to optimize the anticancer activity against DLA and EAC cell lines.


2019 ◽  
Vol 16 (3) ◽  
pp. 272-277 ◽  
Author(s):  
Rasmus N. Klitgaard ◽  
Anders Løbner-Olesen

Background:One of many strategies to overcome antibiotic resistance is the discovery of compounds targeting cellular processes, which have not yet been exploited.Materials and Methods:Using various genetic tools, we constructed a novel high throughput, cellbased, fluorescence screen for inhibitors of chromosome replication initiation in bacteria.Results:The screen was validated by expression of an intra-cellular cyclic peptide interfering with the initiator protein DnaA and by over-expression of the negative initiation regulator SeqA. We also demonstrated that neither tetracycline nor ciprofloxacin triggers a false positive result. Finally, 400 extracts isolated mainly from filamentous actinomycetes were subjected to the screen.Conclusion:We concluded that the presented screen is applicable for identifying putative inhibitors of DNA replication initiation in a high throughput setup.


Sign in / Sign up

Export Citation Format

Share Document