Design of magnesium oxide nanoparticle incorporated carboxy methyl cellulose/poly vinyl alcohol composite film with novel composition for skin tissue engineering

2021 ◽  
pp. 1-11
Author(s):  
Nishchay Verma ◽  
Krishna Pramanik ◽  
Amit Kumar Singh ◽  
Amit Biswas
2018 ◽  
Vol 6 (16) ◽  
pp. 4508-4515 ◽  
Author(s):  
Qian Wu ◽  
Xiaojie Wang ◽  
Sefiu Abolaji Rasaki ◽  
Tiju Thomas ◽  
Chuanxi Wang ◽  
...  

Yellow-emitting carbon dots/polymer-based sensing films with good time stability and high quantum yields were used to sensitively and selectively detect Cu2+ ions due to strengthened aggregation-induced fluorescence quenching.


2021 ◽  
Vol 8 (8) ◽  
pp. 107
Author(s):  
Lilis Iskandar ◽  
Lucy DiSilvio ◽  
Jonathan Acheson ◽  
Sanjukta Deb

Despite considerable advances in biomaterials-based bone tissue engineering technologies, autografts remain the gold standard for rehabilitating critical-sized bone defects in the oral and maxillofacial (OMF) region. A majority of advanced synthetic bone substitutes (SBS’s) have not transcended the pre-clinical stage due to inferior clinical performance and translational barriers, which include low scalability, high cost, regulatory restrictions, limited advanced facilities and human resources. The aim of this study is to develop clinically viable alternatives to address the challenges of bone tissue regeneration in the OMF region by developing ‘dual network composites’ (DNC’s) of calcium metaphosphate (CMP)—poly(vinyl alcohol) (PVA)/alginate with osteogenic ions: calcium, zinc and strontium. To fabricate DNC’s, single network composites of PVA/CMP with 10% (w/v) gelatine particles as porogen were developed using two freeze–thawing cycles and subsequently interpenetrated by guluronate-dominant sodium alginate and chelated with calcium, zinc or strontium ions. Physicochemical, compressive, water uptake, thermal, morphological and in vitro biological properties of DNC’s were characterised. The results demonstrated elastic 3D porous scaffolds resembling a ‘spongy bone’ with fluid absorbing capacity, easily sculptable to fit anatomically complex bone defects, biocompatible and osteoconductive in vitro, thus yielding potentially clinically viable for SBS alternatives in OMF surgery.


Author(s):  
Marjan Goodarzi ◽  
Saeed Javid ◽  
Ali Sajadifar ◽  
Mehdi Nojoomizadeh ◽  
Seyed Hossein Motaharipour ◽  
...  

Purpose With respect to two new subjects, i.e. nanofluids and microchannels, in heat transfer systems and modern techniques used for building them, this paper aims to study on effect of using aluminum oxide nanoparticles in non-Newtonian fluid of aqueous solution of carboxy-methyl cellulose in microtube and through application of different slip coefficients to achieve various qualities on surface of microtube. Design/methodology/approach Simultaneously, the effect of presence of nanoparticles and phenomenon of slip and temperature jump has been explored in non-Newtonian nanofluid in this essay. The assumption of homogeneity of nanofluid and fixed temperature of wall in microtube has been used in modeling processes. Findings The results have been presented as diagrams of velocity, temperature and Nusselt Number and the investigations have indicated that addition of nanoparticles to the base fluid and increase in microtube slip coefficient might improve rate of heat transfer in microtube. Originality/value The flow of non-Newtonian nanofluid of aqueous solution of carboxy methyl cellulose-aluminum oxide has been determined in a microtube for the first time.


Author(s):  
K. M. Manikandan ◽  
A. Yelilarasi ◽  
P. Senthamaraikannan ◽  
S. S. Saravanakumar ◽  
Anish Khan ◽  
...  

2019 ◽  
Vol 12 (2) ◽  
pp. 39-48
Author(s):  
Yunilas Yunilas ◽  
Lili Warly ◽  
Yetti Marlida ◽  
Irsan Ryanto

Abstrak. Penelitian ini bertujuan untuk mengisolasi dan mengkarakteristik fungi lignoselulolitik dari limbah sawit sebagai pendegradasi serat (senyawa polisakarida). Penelitian ini menggunakan metode eksplorasi melalui isolasi, karakteristik, uji degradasi lignoselulosa dan identifikasi. Isolasi menggunakan medium selektif yang dimodifikasi mengandung carboxy methyl cellulose (CMC), xylan, lignin dan manan. Dari hasil isolasi diperoleh 16 isolat fungi lignoselulolitik dan 4 diantaranya memiliki kemampuan tinggi dalam mendegradasi lignoselulosa yaitu isolate fungi YLF2, YLF3, YLF4 dan YLF8. Isolat fungi yang diperoleh memiliki karakteristik yang bervariasi meliputi bentuk, permukaan, tepi dan warna koloni. Hasil uji degradasi (hidrolitik) menunjukkan bahwa isolat fungi YLF8 menghasilkan indeks hidrolitik lebih tinggi dibanding fungi lainnya. Berdasarkan hasil dapat disimpulkan bahwa isolat fungi YLF8 termasuk pada strain Trichoderma sp berpotensi sebagai isolat pendegradasi serat dan dapat digunakan sebagai bioktivator dalam fermentasi pakan berserat.Isolation And Characteristic Of Lignocellulolitic Fungi Of Palm Waste As a Fiber Feed Degrading AgentAbstract. This study aims to isolate and characterize lignocellulolytic fungi from palm wastes as fiber degradation (polysaccharide compounds). This research uses exploration method through isolation, characteristic, lignocellulosic degradation test and identification. Isolation using modified selective medium contains carboxy methyl cellulose (CMC), xylan, lignin and manan. From isolation result obtained 16 isolates of lignocellulolytic fungi and 4 of them have high ability in degrading lignocellulose that is fungi YLF2, YLF3, YLF4 and YLF8. The obtained fungi isolates have varying characteristics including shape, surface, edges and colony color. The result of degradation test (hydrolytic) showed that YLF8 fungi isolates yielded higher hydrolytic index than other fungi. Based on the results it can be concluded that the isolates of YLF8 fungi belong to the Trichoderma sp strain potentially as fiber degrading isolates and can be used as bioctivators in fibrous fermentation feed. 


Sign in / Sign up

Export Citation Format

Share Document