Degradation potential of petroleum hydrocarbon-degrading bacteria immobilized on different carriers in marine environment

2019 ◽  
Vol 37 (12) ◽  
pp. 1417-1424 ◽  
Author(s):  
Xinge Fu ◽  
Qi Zhang ◽  
Yu Gao ◽  
Yanan Wu ◽  
Xinfeng Xiao ◽  
...  
Microbiology ◽  
2009 ◽  
Vol 155 (10) ◽  
pp. 3362-3370 ◽  
Author(s):  
Maki Teramoto ◽  
Masahito Suzuki ◽  
Fumiyoshi Okazaki ◽  
Ariani Hatmanti ◽  
Shigeaki Harayama

Petroleum-hydrocarbon-degrading bacteria were obtained after enrichment on crude oil (as a ‘chocolate mousse’) in a continuous supply of Indonesian seawater amended with nitrogen, phosphorus and iron nutrients. They were related to Alcanivorax and Marinobacter strains, which are ubiquitous petroleum-hydrocarbon-degrading bacteria in marine environments, and to Oceanobacter kriegii (96.4–96.5 % similarities in almost full-length 16S rRNA gene sequences). The Oceanobacter-related bacteria showed high n-alkane-degrading activity, comparable to that of Alcanivorax borkumensis strain SK2. On the other hand, Alcanivorax strains exhibited high activity for branched-alkane degradation and thus could be key bacteria for branched-alkane biodegradation in tropical seas. Oceanobacter-related bacteria became most dominant in microcosms that simulated a crude oil spill event with Indonesian seawater. The dominance was observed in microcosms that were unamended or amended with fertilizer, suggesting that the Oceanobacter-related strains could become dominant in the natural tropical marine environment after an accidental oil spill, and would continue to dominate in the environment after biostimulation. These results suggest that Oceanobacter-related bacteria could be major degraders of petroleum n-alkanes spilt in the tropical sea.


2018 ◽  
Vol 36 (23) ◽  
pp. 2043-2048 ◽  
Author(s):  
Huachun Xu ◽  
Yanan Wu ◽  
Xinmiao Xu ◽  
Meng Gu ◽  
Deying Jiang ◽  
...  

2018 ◽  
Vol 59 (2) ◽  
pp. 166-180
Author(s):  
Wael S. El-Sayed ◽  
Yasser Elbahloul ◽  
Mohamed E. Saad ◽  
Ahmed M. Hanafy ◽  
Abdelrahman H. Hegazi ◽  
...  

2019 ◽  
Vol 20 (1) ◽  
pp. 1
Author(s):  
Rita Susilawati

A laboratory experiment was set up to demonstrate the capability of microbe to remediate petroleum hydrocarbon contaminated beach sand. Oil contaminated soil was used as a source of inoculum for hydrocarbon degrading bacteria (HDB) while oil contaminated beach sand was used as remediation object. The growth of HDB in the inocula was enriched and stimulated through the addition of nutrient in the form of vitamin and mineral as well the addition of oil waste as a source of carbon. Experiment took place in the course of approximately five weeks. Microscopic observation clearly showed the interaction between microbe and oil contaminant both in enrichment and bioremediation samples. The result of the experiment also suggests that approximately 25% of the petroleum hydrocarbon mass in the contaminated beach sand was biodegraded over the course of one month. Overall, the results of this experiment suggest the potential of bioremediation method to treat petroleum hydrocarbon polluted environment.Keywords: bacteria, bioremediation, hydrocarbon DOI: 10.33332/jgsm.2019.v20.1.1-7


1987 ◽  
Vol 1987 (1) ◽  
pp. 247-253
Author(s):  
Salah M. Al-Mazidi ◽  
Omar Samhan

ABSTRACT Since the discovery of oil in Kuwait, most oil-related activities have been located along the coastline 50 km south of Kuwait City. Other related industrial activities have been developed in this area apart from oil and petroleum products export in order to diversify the national sources of income. For these reasons, the potential for large oil spills in Kuwait's marine environment is highest along the south coast, where oil refineries and exporting facilities are located. An average of 219 barrels of oil were spilled annually between 1979 and 1985, and 2,100 gallons of dispersants were used in cleanup operations. The majority of incidents involved less than 5 barrels of oil and 500 gallons of dispersants. Incidents involving more than 100 barrels of oil and 5,000 gallons of dispersants were confined to the Sea Island and Mina Al-Ahmadi North and South Piers. This distribution undoubtedly affects the concentration of petroleum residues in various components of the marine environment, resulting in an increase in tar ball density along this coast, reaching a maximum at Ras Az-Zor, and significantly higher levels of vanadium and petroleum hydrocarbons in sediments and oysters collected south of Mina Al-Ahmadi. The objective of this paper is to report on the number, volume, and frequency distribution of oil spill incidents in Kuwait and the usage of dispersants in cleanup operations. Vanadium and petroleum hydrocarbon concentrations also are described as is the sensitivity of the southern coastal environment to oil spills. Recommendations have been made on how to conduct cleanup operations for any future oil spill incidents along the southern shoreline of Kuwait.


2020 ◽  
Vol 2 (10) ◽  
pp. 5-10
Author(s):  
Ishita Agrawal

It is widely known that petroleum hydrocarbons constitute one of the most hazardous pollutants that affect human and environmental health. The ongoing research on bioremediation with petroleum hydrocarbon-degrading bacteria has shown tremendous promise of the technology due to its advantages of high efficiency and eco-friendly nature. To this end, studies have been carried out to identify a large amount of bacterial species with petroleum hydrocarbon-degrading ability for applications in bioremediation. Here, we present a brief perspective of some of the notable advances in oil degrading bacteria and the remedial actions for decontamination of water and soil along with recovering the spilled materials at oil sites.


RSC Advances ◽  
2019 ◽  
Vol 9 (60) ◽  
pp. 35304-35311 ◽  
Author(s):  
Bofan Zhang ◽  
Liang Zhang ◽  
Xiuxia Zhang

The immobilization of bacteria on biochar was effective in reducing TPHs, n-alkanes with C12–18 and maintaining the balance of the soil ecosystem.


2019 ◽  
Vol 8 (15) ◽  
Author(s):  
Mariana E. Campeão ◽  
Jean Swings ◽  
Bruno Sergio Silva ◽  
Koko Otsuki ◽  
Fabiano L. Thompson ◽  
...  

Unplanned oil spills during offshore production are a serious problem for the industry and the marine environment. Here, we present the genome sequence analysis of three novel hydrocarbon-degrading bacteria, namely, “Candidatus Colwellia aromaticivorans” sp.


Sign in / Sign up

Export Citation Format

Share Document