scholarly journals Emission factors of fine particulate matter, organic and elemental carbon, carbon monoxide, and carbon dioxide for four solid fuels commonly used in residential heating by the U.S. Navajo Nation

2017 ◽  
Vol 67 (9) ◽  
pp. 1020-1035 ◽  
Author(s):  
Wyatt M. Champion ◽  
Lea Connors ◽  
Lupita D. Montoya
Author(s):  
Zafar Fatmi ◽  
Georgia Ntani ◽  
David Coggon

To assist interpretation of a study in rural Pakistan on the use of biomass for cooking and the risk of coronary heart disease, we continuously monitored airborne concentrations of fine particulate matter (PM2.5) and carbon monoxide (CO) for up to 48 h in the kitchens of households randomly selected from the parent study. Satisfactory data on PM2.5 and CO respectively were obtained for 16 and 17 households using biomass, and 19 and 17 using natural gas. Linear regression analysis indicated that in comparison with kitchens using natural gas, daily average PM2.5 concentrations were substantially higher in kitchens that used biomass in either a chimney stove (mean difference 611, 95% CI: 359, 863 µg/m3) or traditional three-stone stove (mean difference 389, 95% CI: 231, 548 µg/m3). Daily average concentrations of CO were significantly increased when biomass was used in a traditional stove (mean difference from natural gas 3.7, 95% CI: 0.8, 6.7 ppm), but not when it was used in a chimney stove (mean difference −0.8, 95% CI: −4.8, 3.2 ppm). Any impact of smoking by household members was smaller than that of using biomass, and not clearly discernible. In the population studied, cooking with biomass as compared with natural gas should serve as a good proxy for higher personal exposure to PM2.5.


2021 ◽  
Author(s):  
Jie Tang ◽  
Zhuo Yang ◽  
Yue Tui ◽  
Ju Wang

Abstract In order to study the pollution characteristics and main sources of fine particulate matter in the atmosphere of the city of Changchun, PM2.5 samples were collected during the four seasons in 2014, and representative months for each season are January, April, July, and October. Sample collection was carried out on 10 auto-monitoring stations in Changchun, and PM2.5 mass concentration, and its chemical components (including inorganic elements, organic carbon, elemental carbon, and water-soluble ions) were measured. The results show that the annual average mass concentration of PM2.5 in Changchun in 2014 was about 66.77 µg/m3. Organic matter was the highest component in PM2.5, followed by secondary inorganic ions (SNA), mineral dust (MIN), elemental carbon (EC), and trace elements (TE). Positive Matrix Factorization (PMF) results gave seven factors, namely, industrial, biomass- and coal-burning, industrial and soil dust, motor-vehicle, soil and secondary-ion, light-industrial, and hybrid-automotive and -industrial sources in PM2.5, with contributing values of 18.9%, 24.2%, 5.7%, 23.0%, 11.5%, 13.0%, and 3.6%, respectively.


Epidemiology ◽  
2007 ◽  
Vol 18 (Suppl) ◽  
pp. S132
Author(s):  
P Kinney ◽  
H Roman ◽  
K Walker ◽  
T Gettleman ◽  
B Hubbell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document