Tree-cavity formation in the mature subtropical forests of Yambaru, Okinawa Island

2021 ◽  
pp. 1-9
Author(s):  
Atsushi Takashima ◽  
Akira Nakanishi ◽  
Mina Morishita ◽  
Shin Abe ◽  
Kazuhiko Saito ◽  
...  
Author(s):  
S. Wisutmethangoon ◽  
T. F. Kelly ◽  
J.E. Flinn

Vacancies are introduced into the crystal phase during quenching of rapid solidified materials. Cavity formation occurs because of the coalescence of the vacancies into a cluster. However, because of the high mobility of vacancies at high temperature, most of them will diffuse back into the liquid phase, and some will be lost to defects such as dislocations. Oxygen is known to stabilize cavities by decreasing the surface energy through a chemisorption process. These stabilized cavities, furthermore, act as effective nucleation sites for precipitates to form during aging. Four different types of powders with different oxygen contents were prepared by gas atomization processing. The atomized powders were then consolidated by hot extrusion at 900 °C with an extrusion ratio 10,5:1. After consolidation, specimens were heat treated at 1000 °C for 1 hr followed by water quenching. Finally, the specimens were aged at 600 °C for about 800 hrs. TEM samples were prepared from the gripends of tensile specimens of both unaged and aged alloys.


Author(s):  
A. Cziráki ◽  
E. Ková-csetényi ◽  
T. Torma ◽  
T. Turmezey

It is known that the formation of cavities during superplastic deformation can be correlated with the development of stress concentrations at irregularities along grain boundaries such as particles, ledges and triple points. In commercial aluminium alloys Al-Fe-Si particles or other coarse constituents may play an important role in cavity formation.Cavity formation during superplastic deformation was studied by optical metallography and transmission scanning electron microscopic investigations on Al-Mg-Si and Al-Mg-Mn alloys. The structure of particles was characterized by selected area diffraction and X-ray micro analysis. The volume fraction of “voids” was determined on mechanically polished surface.It was found by electron microscopy that strongly deformed regions are formed during superplastic forming at grain boundaries and around coarse particles.According to electron diffraction measurements these areas consist of small micro crystallized regions. See Fig.l.Comparing the volume fraction and morphology of cavities found by optical microscopy a good correlation was established between that of micro crystalline regions.


Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 83
Author(s):  
Yuzhi Tang ◽  
Quanqin Shao ◽  
Tiezhu Shi ◽  
Guofeng Wu

Forest stand volume is one of the key forest structural attributes in estimating and forecasting ecosystem productivity and carbon stock. However, studies on growth modeling and environmental influences on stand volume are still rare to date, especially in subtropical forests in karst areas, which are characterized by a complex species composition and are important in the global carbon budget. In this paper, we developed growth models of stand volume for all the dominant tree species (groups) (DTSG) in a subtropical karst area, the Guizhou Plateau based on an investigation of the effects of various environmental factors on stand volume. The Richards growth function, space-for-time substitution and zonal-hierarchical modeling method were applied in the model fitting, and multiple indices were used in the model evaluation. The results showed that the climatic factors of annual temperature and precipitation, as well as the site factors of stand origin, elevation, slope gradient, topsoil thickness, site quality degree, rocky desertification type and rocky desertification degree, have significant influences on stand volume, and the topsoil thickness and site quality degree have the strongest positive effect. A total of 959 growth equations of stand volume were fitted with a five-level stand classifier (DTSG–climatic zone–site quality degree–stand origin–rocky desertification type). All the growth equations were qualified, because all passed the TRE test (≤30%), and the majority of the R2 ≥ 0.50, above 70% of the RMSE were between 5.0 and 20.0, and above 80% of the P ≥ 75%. These findings provide updated knowledge about the environmental effect on the stand volume growth of subtropical forests in karst areas, and the developed stand volume growth models are convenient for forest management and planning, further contributing to the study of forest carbon storage assessments and global carbon cycling.


Author(s):  
Meihua Liu ◽  
Shengxian Chen ◽  
Helena Korpelainen ◽  
Hui Zhang ◽  
Jingru Wang ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 748
Author(s):  
Joanna Kochan ◽  
Agnieszka Nowak ◽  
Barbara Kij ◽  
Sylwia Prochowska ◽  
Wojciech Niżański

The aim of this study was to analyze the morphokinetic parameters of feline embryos using a time lapse system. Oocytes matured in vitro were fertilized (IVF) and in vitro cultured in a time lapse-system (Primo Vision®, Gothenburg, Sweden). The first cell division of embryos occurred between 17 h post insemination (hpi) and 38 hpi, with the highest proportion of embryos (46%) cleaving between 21 and 24 hpi. The timing of the first cleavage significantly affected further embryo development, with the highest development occurring in embryos that cleaved at 21–22 hpi. Embryos that cleaved very early (17–18 hpi) developed poorly to the blastocyst stage (2%) and none of the embryos that cleaved later than 27 hpi were able to reach the blastocyst stage. Morphological defects were observed in 48% of the embryos. There were no statistically significant differences between the timing intervals of the first cleavage division and the frequency of morphological defects in embryos. Multiple (MUL) morphological defects were detected in more than half (56%) of the abnormal embryos. The most frequent single morphological defects were cytoplasmic fragmentation (FR) (8%) and blastomere asymmetry (AS) (6%). Direct cleavage (DC) from 1–3 or 3–5 blastomeres, reverse cleavage (RC) and vacuoles were rarely observed (2–3%). The timing of blastocyst cavity formation is a very good indicator of embryo quality. In our study, blastocyst cavity formation occurred between 127–167 hpi, with the highest frequency of hatching observed in blastocysts that cavitated between 142–150 hpi. Blastocysts in which cavitation began after 161 h did not hatch. In conclusion, the timing of the first and second cleavage divisions, the timing of blastocyst cavity formation and morphological anomalies can all be used as early and non-invasive indicators of cat embryo development in vitro.


Sign in / Sign up

Export Citation Format

Share Document