scholarly journals An investigation into the impact of deleting one copy of the glutaredoxin-2 gene on diet-induced weight gain and the bioenergetics of muscle mitochondria in female mice fed a high fat diet

Redox Report ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 87-94
Author(s):  
Robert Gill ◽  
Sarah Mallay ◽  
Adrian Young ◽  
Ryan J. Mailloux
2017 ◽  
Vol 41 (12) ◽  
pp. 1805-1814 ◽  
Author(s):  
S Béliard ◽  
W Le Goff ◽  
F Saint-Charles ◽  
L Poupel ◽  
V Deswaerte ◽  
...  

2018 ◽  
Vol 50 (8) ◽  
pp. 605-614
Author(s):  
Hong He ◽  
Katie Holl ◽  
Sarah DeBehnke ◽  
Chay Teng Yeo ◽  
Polly Hansen ◽  
...  

Type 2 diabetes is a complex disorder affected by multiple genes and the environment. Our laboratory has shown that in response to a glucose challenge, two-pore channel 2 ( Tpcn2) knockout mice exhibit a decreased insulin response but normal glucose clearance, suggesting they have improved insulin sensitivity compared with wild-type mice. We tested the hypothesis that improved insulin sensitivity in Tpcn2 knockout mice would protect against the negative effects of a high fat diet. Male and female Tpcn2 knockout (KO), heterozygous (Het), and wild-type (WT) mice were fed a low-fat (LF) or high-fat (HF) diet for 24 wk. HF diet significantly increases body weight in WT mice relative to those on the LF diet; this HF diet-induced increase in body weight is blunted in the Het and KO mice. Despite the protection against diet-induced weight gain, however, Tpcn2 KO mice are not protected against HF-diet-induced changes in glucose or insulin area under the curve during glucose tolerance tests in female mice, while HF diet has no significant effect on glucose tolerance in the male mice, regardless of genotype. Glucose disappearance during an insulin tolerance test is augmented in male KO mice, consistent with our previous findings suggesting enhanced insulin sensitivity in these mice. Male KO mice exhibit increased fasting plasma total cholesterol and triglyceride concentrations relative to WT mice on the LF diet, but this difference disappears in HF diet-fed mice where there is increased cholesterol and triglycerides across all genotypes. These data demonstrate that knockout of Tpcn2 may increase insulin action in male, but not female, mice. In addition, both male and female KO mice are protected against diet-induced weight gain, but this protection is likely independent from glucose tolerance, insulin sensitivity, and plasma lipid levels.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Weston He ◽  
Trupti Trivedi ◽  
Gabriel Pagnotti ◽  
Sreemala Murthy ◽  
Yun She ◽  
...  

Background and Hypothesis: Hyperglycemia is a major source of disease and morbidity among the adult population. Prior studies correlate long-term high fat diet (HFD) mediated hyperglycemia with bone fragility and muscle weakness. Furthermore, the mechanism driving hyperglycemia between sexes are unknown. Our group previously showed that HFDs induced insulin resistance in male mice and glucose intolerance in female mice. This establishes the need to study the impact of long-term HFDs on the bones and muscles using an older cohort of both male and female mice. For that, we hypothesized a long-term HFD mediated hyperglycemia will change bone and muscle structures and impair their functions in adult male and female mice. Experimental Design or Project Methods: 22-week C57Bl6 mice were fed either a HFD or low fat diet (LFD) for 25 weeks. After euthanasia, bones and muscles were harvested and evaluated using MicroCT, histology, and mechanical testing. Statistical analysis was performed using GraphPad Prism with p<0.05 considered significant. Results: MicoCT data saw significant reductions to cortical thickness (p<0.05), bone mineral density (p<0.001), and increases to medullary area (p<0.05) among HFD males and females compared to LFD. HFD-males also experienced significant increase in cortical porosity (P<0.001) whereas no changes were noted in HFDfemales. Trabecular bone volume was relatively unchanged. HFD increased cortical osteoclast surface (p<0.001) for both sexes. Bone histology saw increased marrow adiposity among HFD-females (p<0.05). Muscle histology exhibited HFD-related reductions in myofiber diameter (p<0.001) for both sexes. Mechanical testing demonstrated reduced young’s modulus (p<0.05) and yield stress (p<0.05) among HFD mice, despite non-significant differences in ultimate strength. Conclusion and Potential Impact: The changes associated with a long-term HFD differed between sexes but still led to functional impairments of bone and muscle for both sexes, emphasizing the importance of looking further into the mechanisms responsible for these changes. This can potentially translate to the clinic in the treatment of musculoskeletal complications associated with HFDs.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Mohammed A Khan ◽  
Preethi Samuel ◽  
Sourashish Nag ◽  
Tahir Hussain

Obesity in itself is a disease condition and a major risk factor in the development of hypertension, dyslipidemia, and hyperglycemia. Therefore, successful strategies for improving obesity and related metabolic risk factors are needed. Role of renin-angiotensin system (RAS) has been implicated in obesity and metabolic dysfunction. Recently, we have shown that AT2R knock-out in female mice caused a greater body weight gain and hyperinsulimia in response to high fat diet (HFD). In the present study, we hypothesize that AT2R activation rescues diet-induced obesity in females. To test this hypothesis, we injected AT2R non-peptide agonist C21 (0.3mg/kg/day i.p) in C57BL6 female mice on HFD for 12 weeks. C21-treatment did not affect the HFD calorie intake (HFD: 937±18 Kcal; C21HFD: 886±37 Kcal) but caused lesser body weight gain compared to control (HFD: 4.4± 0.4g; C21HFD: 3.06± 0.4g). Similar to the body weight gain pattern, gonadal fat weight and adipocyte size were decreased significantly in C21-treated mice on HFD compared to control HFD group (HFD: 4.4± 0.4 g; C21 HFD: 3.06± 0.4g) and (HFD: 6404±161.6μm2 ; C21HFD: 3874±103.2μm2 ) respectively. Moreover, the C21-treated females on HFD had lower levels of plasma insulin, improved glucose tolerance, and decreased plasma free fatty acids and hepatic triglycerides. Western blot revealed that phospho-Ser79-acetyl CoA carboxylase (p-Ser79-ACC-1) was reduced, an index of increased lipogenic activity and decreased β-oxidation process, in both adipose (Adi) and hepatic (Hep) tissues of HFD fed groups (Adi: 86% and Hep: 73% of 100% controls); C21-treatment revered the decrease in p-ser79-ACC-1 in Adi (104% of control) and caused an increase in Hep (122% of control) respectively. The HFD feeding lowered the estradiol level (ND: 38.8±2.6 vs HFD:11.3±1.2ng), which was modestly reversed by C21 treatment (C21HFD:17.4± 1.5ng) in HFD mice. Our results strongly suggest that stimulation of AT2R in female mice positively contribute, predominantly independent of estrogen, to rescue body weight gain and adipocyte size increase in response to HFD. We propose reduced lipogenesis and enhanced lipid β-oxidation as potential mechanisms linked to AT2R action in reducing obesity and its related metabolic disorders in females.


Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 349
Author(s):  
Mostafa M. Abbas ◽  
Paul Soto ◽  
Latha Ramalingam ◽  
Yasser El-Manzalawy ◽  
Halima Bensmail ◽  
...  

Children are prescribed second-generation antipsychotic (SGA) medications, such as olanzapine (OLZ) for FDA-approved and “off-label” indications. The long-term impact of early-life SGA medication exposure is unclear. Olanzapine and other SGA medications are known to cause excessive weight gain in young and adult patients, suggesting the possibility of long-term complications associated with the use of these drugs, such as obesity, diabetes, and heart disease. Further, the weight gain effects of OLZ have previously been shown to depend on the presence of gut bacteria and treatment with OLZ, which shifts gut bacteria toward an “obesogenic” profile. The purpose of the current study was to evaluate changes in gut bacteria in adult mice following early life treatment with OLZ and being fed either a high-fat diet or a high-fat diet supplemented with fish oil, which has previously been shown to counteract gut dysbiosis, weight gain, and inflammation produced by a high-fat diet. Female and male C57Bl/6J mice were fed a high fat diet without (HF) or with the supplementation of fish oil (HF-FO) and treated with OLZ from postnatal day (PND) 37–65 resulting in four groups of mice: mice fed a HF diet and treated with OLZ (HF-OLZ), mice fed a HF diet and treated with vehicle (HF), mice fed a HF-FO diet and treated with OLZ (HF-FO-OLZ), and mice fed a HF-FO diet and treated with vehicle (HF-FO). Following euthanasia at approximately 164 days of age, we determined changes in gut bacteria populations and serum LPS binding protein, an established marker of gut inflammation and dysbiosis. Our results showed that male HF-FO and HF-FO-OLZ mice had lower body weights, at sacrifice, compared to the HF group, with a comparable body weight across groups in female mice. HF-FO and HF-FO-OLZ male groups also exhibited lower serum LPS binding protein levels compared to the HF group, with no differences across groups in female mice. Gut microbiota profiles were also different among the four groups; the Bacteroidetes-to-Firmicutes (B/F) ratio had the lowest value of 0.51 in the HF group compared to 0.6 in HF-OLZ, 0.9 in HF-FO, and 1.1 in HF-FO-OLZ, with no differences in female mice. In conclusion, FO reduced dietary obesity and its associated inflammation and increased the B/F ratio in male mice but did not benefit the female mice. Although the weight lowering effects of OLZ were unexpected, FO effects persisted in the presence of olanzapine, demonstrating its potential protective effects in male subjects using antipsychotic drugs.


2018 ◽  
Vol 314 (3) ◽  
pp. R478-R488 ◽  
Author(s):  
Nicola Aberdein ◽  
Robert J. Dambrino ◽  
Jussara M. do Carmo ◽  
Zhen Wang ◽  
Laura E. Mitchell ◽  
...  

Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of leptin receptor signaling and may contribute to leptin resistance in diet-induced obesity. Although PTP1B inhibition has been suggested as a potential weight loss therapy, the role of specific neuronal PTP1B signaling in cardiovascular and metabolic regulation and the importance of sex differences in this regulation are still unclear. In this study, we investigated the impact of proopiomelanocortin (POMC) neuronal PTP1B deficiency in cardiometabolic regulation in male and female mice fed a high-fat diet (HFD). When compared with control mice (PTP1B flox/flox), male and female mice deficient in POMC neuronal PTP1B (PTP1B flox/flox/POMC-Cre) had attenuated body weight gain (males: −18%; females: −16%) and fat mass (males: −33%; female: −29%) in response to HFD. Glucose tolerance was improved by 40%, and liver lipid accumulation was reduced by 40% in PTP1B/POMC-Cre males but not in females. When compared with control mice, deficiency of POMC neuronal PTP1B did not alter mean arterial pressure (MAP) in male or female mice (males: 112 ± 1 vs. 112 ± 1 mmHg in controls; females: 106 ± 3 vs. 109 ± 3 mmHg in controls). Deficiency of POMC neuronal PTP1B also did not alter MAP response to acute stress in males or females compared with control mice (males: Δ32 ± 0 vs. Δ29 ± 4 mmHg; females: Δ22 ± 2 vs. Δ27 ± 4 mmHg). These data demonstrate that POMC-specific PTP1B deficiency improved glucose tolerance and attenuated diet-induced fatty liver only in male mice and attenuated weight gain in males and females but did not enhance the MAP and HR responses to a HFD or to acute stress.


2021 ◽  
Vol 224 (2) ◽  
pp. S695-S696
Author(s):  
Derek O'Neil ◽  
Danielle Goodspeed ◽  
Alyssa Deacon ◽  
Cynthia Shope ◽  
Kjersti M. Aagaard

2021 ◽  
Vol 137 ◽  
pp. 111370
Author(s):  
Chethan Sampath ◽  
Derek Wilus ◽  
Mohammad Tabatabai ◽  
Michael L. Freeman ◽  
Pandu R. Gangula

Sign in / Sign up

Export Citation Format

Share Document