Influence of murine maternal diabetes on placental morphology, gene expression, and function

2008 ◽  
Vol 114 (2) ◽  
pp. 99-110 ◽  
Author(s):  
Yang Yu ◽  
Umashankar Singh ◽  
Wei Shi ◽  
Toshihiro Konno ◽  
Michael J. Soares ◽  
...  
Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 350
Author(s):  
Julianty Frost ◽  
Mark Frost ◽  
Michael Batie ◽  
Hao Jiang ◽  
Sonia Rocha

Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. We highlight the relevance of HIF and 2-OGDs in the control of gene expression in response to hypoxia and their relevance to human biology and health.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1874
Author(s):  
Alberto Elmi ◽  
Nadia Govoni ◽  
Augusta Zannoni ◽  
Martina Bertocchi ◽  
Chiara Bernardini ◽  
...  

Roe deer are seasonal breeders with a complete yearly testicular cycle. The peak in reproductive activity is recorded during summer, the rutting period, with the highest levels of androgens and testicular weight. Melatonin plays a pivotal role in seasonal breeders by stimulating the hypothalamus–pituitary–gonads axis and acting locally; in different species, its synthesis within testes has been reported. The aim of this study was to evaluate the physiological melatonin pattern within roe deer testes by comparing data obtained from animals sampled during pre- and post-rut periods. Melatonin was quantified in testicular parenchyma, along with the genetic expression of enzymes involved in its local synthesis (AANAT and ASMT) and function (UCP1). Melatonin receptors, MT1-2, were quantified both at protein and gene expression levels. Finally, to assess changes in reproductive hormonal profiles, testicular dehydroepiandrosterone (DHEA) was quantified and used for a correlation analysis. Melatonin and AANAT were detected in all samples, without significant differences between pre- and post-rut periods. Despite DHEA levels confirming testicular involution during the post-rut period, no correlations appeared between such involution and melatonin pathways. This study represents the first report regarding melatonin synthesis in roe deer testes, opening the way for future prospective studies in the physiology of this species.


2021 ◽  
Vol 7 (3) ◽  
pp. 42
Author(s):  
Victoria Mamontova ◽  
Barbara Trifault ◽  
Lea Boten ◽  
Kaspar Burger

Gene expression is an essential process for cellular growth, proliferation, and differentiation. The transcription of protein-coding genes and non-coding loci depends on RNA polymerases. Interestingly, numerous loci encode long non-coding (lnc)RNA transcripts that are transcribed by RNA polymerase II (RNAPII) and fine-tune the RNA metabolism. The nucleolus is a prime example of how different lncRNA species concomitantly regulate gene expression by facilitating the production and processing of ribosomal (r)RNA for ribosome biogenesis. Here, we summarise the current findings on how RNAPII influences nucleolar structure and function. We describe how RNAPII-dependent lncRNA can both promote nucleolar integrity and inhibit ribosomal (r)RNA synthesis by modulating the availability of rRNA synthesis factors in trans. Surprisingly, some lncRNA transcripts can directly originate from nucleolar loci and function in cis. The nucleolar intergenic spacer (IGS), for example, encodes nucleolar transcripts that counteract spurious rRNA synthesis in unperturbed cells. In response to DNA damage, RNAPII-dependent lncRNA originates directly at broken ribosomal (r)DNA loci and is processed into small ncRNA, possibly to modulate DNA repair. Thus, lncRNA-mediated regulation of nucleolar biology occurs by several modes of action and is more direct than anticipated, pointing to an intimate crosstalk of RNA metabolic events.


2011 ◽  
Vol 13 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Luciana G Pereira ◽  
Carine P Arnoni ◽  
Edgar Maquigussa ◽  
Priscila C Cristovam ◽  
Juliana Dreyfuss ◽  
...  

The prorenin receptor [(P)RR] is upregulated in the diabetic kidney and has been implicated in the high glucose (HG)-induced overproduction of profibrotic molecules by mesangial cells (MCs), which is mediated by ERK1/2 phosphorylation. The regulation of (P)RR gene transcription and the mechanisms by which HG increases (P)RR gene expression are not fully understood. Because intracellular levels of angiotensin II (AngII) are increased in MCs stimulated with HG, we used this in vitro system to evaluate the possible role of AngII in (P)RR gene expression and function by comparing the effects of AT1 receptor blockers (losartan or candesartan) and (P)RR mRNA silencing (siRNA) in human MCs (HMCs) stimulated with HG. HG induced an increase in (P)RR and fibronectin expression and in ERK1/2 phosphorylation. These effects were completely reversed by (P)RR siRNA and losartan but not by candesartan (an angiotensin receptor blocker that, in contrast to losartan, blocks AT1 receptor internalization). These results suggest that (P)RR gene activity may be controlled by intracellular AngII and that HG-induced ERK1/2 phosphorylation and fibronectin overproduction are primarily induced by (P)RR activation. This relationship between AngII and (P)RR may constitute an additional pathway of MC dysfunction in response to HG stimulation.


2016 ◽  
Vol 113 (32) ◽  
pp. 9111-9116 ◽  
Author(s):  
Adam J. Bewick ◽  
Lexiang Ji ◽  
Chad E. Niederhuth ◽  
Eva-Maria Willing ◽  
Brigitte T. Hofmeister ◽  
...  

In plants, CG DNA methylation is prevalent in the transcribed regions of many constitutively expressed genes (gene body methylation; gbM), but the origin and function of gbM remain unknown. Here we report the discovery that Eutrema salsugineum has lost gbM from its genome, to our knowledge the first instance for an angiosperm. Of all known DNA methyltransferases, only CHROMOMETHYLASE 3 (CMT3) is missing from E. salsugineum. Identification of an additional angiosperm, Conringia planisiliqua, which independently lost CMT3 and gbM, supports that CMT3 is required for the establishment of gbM. Detailed analyses of gene expression, the histone variant H2A.Z, and various histone modifications in E. salsugineum and in Arabidopsis thaliana epigenetic recombinant inbred lines found no evidence in support of any role for gbM in regulating transcription or affecting the composition and modification of chromatin over evolutionary timescales.


Genetics ◽  
2004 ◽  
Vol 167 (4) ◽  
pp. 1801-1811 ◽  
Author(s):  
Christopher P. Bonin ◽  
Richard S. Mann

Sign in / Sign up

Export Citation Format

Share Document