scholarly journals Lipophilic fractions from the marine sponge Halichondria sitiens decrease secretion of pro-inflammatory cytokines by dendritic cells and decrease their ability to induce a Th1 type response by allogeneic CD4+ T cells

2017 ◽  
Vol 55 (1) ◽  
pp. 2116-2122 ◽  
Author(s):  
Xiaxia Di ◽  
Jon T. Oskarsson ◽  
Sesselja Omarsdottir ◽  
Jona Freysdottir ◽  
Ingibjorg Hardardottir
Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1626-1626
Author(s):  
Dror Mevorach ◽  
Veronique Amor ◽  
Yehudith Shabat

Abstract Background: Chimeric antigen receptor (CAR)-modified T cells with specificity against CD19 have demonstrated dramatic promise against highly refractory hematologic malignancies. Clinical responses with complete remission rates as high as 90% have been reported in children and adults with relapsed/refractory acute lymphoblastic leukemia (ALL). However, very significant toxicity has been observed and as many as 30% in average developing severe forms of CRS and possibly related neurotoxicity. CRS is occurring due to large secretion of pro-inflammatory cytokines, mainly from macrophages/monocytes, and resembles macrophage-activating syndrome and hemophagocytosis in response to CAR T-secreting IFN-g and possibly additional cytokines. To better understand the mechanisms leading to CRS and to treat or prevent it, we have developed in vitro and in vivo models of CRS with and without CAR-modified T cells. Early apoptotic cells that have been successfully tested for the prevention of acute GVHD, including in 7 ALL patients, were tested in these models for their effect on cytokines and CAR T cell cytotoxicity. Methods: CD19-expressing HeLa cells were used alone or with co-incubation with human macrophages for in vitro experiments and intraperitoneal experiments. Raji was used in vivo for leukemia induction. LPS and IFN-γ were used to trigger additional cytokine release. CD19-specific CAR-modified cells were used (ProMab) for anti-tumor effect against CD19-bearing cells. Cytotoxicity assay was examined in vivo using 7-AAD with flow cytometry and in vitro by survival curves and analysis of tumor load in bone marrow and liver. CRS occurred spontaneously or in response to LPS and IFN-γ. Mouse IL-10, IL-1β, IL-2, IP-10, IL-4, IL-5, IL-6, IFNα, IL-9, IL-13, IFN-γ, IL-12p70, GM-CSF, TNF-α, MIP-1α, MIP-1β, IL-17A, IL-15/IL-15R, and IL-7, as well as 32 human cytokines were evaluated by Luminex technology using the MAPIX system analyzer (Mereck Millipore) and MILLIPLEX Analyst software (Merek Millipore). Mouse IL-6Rα, MIG (CXCL9), and TGF-β1 were evaluated by Quantikine ELISA (R&D systems). Bone marrow and liver were evaluated using flow cytometry and immunohistochemistry. The IFN-γ effect was evaluated by STAT1 phosphorylation and biological products. Human macrophages and dendritic cells were generated from monocytes. Early apoptotic cells were produced as shown in GVHD clinical trial; at least 50% of cells were annexin V-positive and less than 5% were PI-positive. Results: Apoptotic cells had no negative effect in vitro or in vivo on CAR-modified T cells with specificity against CD19. There were comparable E/T ratios for CAR T in the presence or absence of apoptotic cells in vitro, and comparable survival curves in vivo. On the other hand, significant downregulation (p<0.01) of pro-inflammatory cytokines, including IL-6, IP-10, TNF-a, MIP-1α, MIP-1β, was documented. IFN-γ was not downregulated, but its effect on macrophages and dendritic cells was inhibited at the level of phosphorylated STAT1 and IFN-γ-induced expression of CXCL10 and CXCL9 was reduced. Conclusion: CRS evolves from several factors, including tumor biology, interaction with monocytes/macrophages/dendritic cells, and as a response to the CAR T cell effect and expansion. Apoptotic cells decrease pro-inflammatory cytokines that originate from innate immunity and inhibit the IFN-γ effect on monocyte/macrophages/ dendritic cells without harming IFN-γ levels or CAR-T cytotoxicity. Disclosures Mevorach: Enlivex: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding. Amor:Enlivex: Employment. Shabat:Enlivex: Employment.


2019 ◽  
Author(s):  
Judith De Arcos Jimenez ◽  
Mariana Ruiz Briseño ◽  
Moises Ramos Solano ◽  
Jaime Andrade-Villanueva ◽  
Luz Gonzalez-Hernandez ◽  
...  

2009 ◽  
Vol 145 (1) ◽  
pp. 64-72 ◽  
Author(s):  
Shahram Y. Kordasti ◽  
Behdad Afzali ◽  
Ziyi Lim ◽  
Wendy Ingram ◽  
Janet Hayden ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3282-3282
Author(s):  
Chao Ma ◽  
Lin Lin ◽  
Henry Erlich ◽  
Elizabeth Trachtenberg ◽  
Stephan Targan ◽  
...  

Abstract Abstract 3282 Innate lymphocytes can play both protective and pathogenic roles in chronic inflammatory disorders. Recently, killer-cell immunoglobulin-like receptors (KIRs) and its cognitive ligands - human leukocyte antigen (HLA) class I molecules - were identified as genetic risk factors for Crohn's Disease (CD), a common inflammation symptom. Natural killer (NK) cells, the major KIR-expressing cell type, can be educated through KIR-HLA ligation. To uncover the cellular mechanism that determines CD susceptibility, we utilize a novel single-cell functional proteomics microchip and other highly-multiplexed assays (Ma, C. et al. Nature Medicine, 2011, 17, 738–743). We show that, in genetically pertinent individuals, natural killer (NK) cells are functionally reprogrammed to modulate the activation threshold of CD4+ T cells, a major cellular mediator of chronic inflammation. Genetic study of 455 CD patients bearing the AA haplotype identifies that the HLA-C1/C1 allotype, ligand of the KIR2DL3 receptor, is significantly enriched (p<0.0001). Moreover, when evaluating the secretion of 20 cytokines from single purified NK cells that are retrieved from the peripheral blood, we observe that NK cells expressing KIR2DL3 were strongly polarized to robustly produce a myriad of pro-inflammatory cytokines and chemoattractants in copious amounts. Comparing to those from other subjects, NK cells from HLA-C1/C1 subjects produce significantly increased level (p<0.05) of 11 soluble mediators, including TNF, INF-g, ILs, and CCLs. Furthermore, among all NK cells within the HLA-C1/C1 subjects, NK cells expressing KIR2DL3 receptors are the most potent to produce cytokines (2-log higher) and exhibit the highest polyfunctionality. These observations are also confirmed by intracellular staining and ELISA assay of NK cell culture media. Most importantly, the KIR-educated NK cells can strongly augment the activation and proliferation of CD4+ T cells. As shown in autologous NK and CD4+ T cell co-culture assay, CD4+ T cells proliferate aggressively in the presence of NK cells in a dose-dependent fashion (R2=0.99). NK surface costimulatory molecules blockage and NK-CD4+ T cells transwell-separation experiments indicate that this augmentation is not contact-dependent. On the other hand, NK cytokine depletion and ELISA essay of the co-culture media confirmed that soluble factors, such as ILs, IFN-g and TNF, activate CD4+ T cells. KIR2DL3 signaling-mediated education licenses NK cells the capacity to secrete large amounts of pro-inflammatory cytokines and chemokines, which in turn lowers activation threshold of CD4+ T cells and increases susceptibility to chronic inflammation disorders. Our study establishes, for the first time, an immunologic cellular mechanism that explains the KIR genetics-based susceptibility to CD and other chronic inflammatory syndromes. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 767-767
Author(s):  
Roch Houot ◽  
Ivan Perrot ◽  
Isabelle Durand ◽  
Eric Garcia ◽  
Serge Lebecque

Abstract CD4+CD25+ regulatory T cells (Treg) are essential negative regulators of immune responses. However, the mechanisms of immune suppression and the spectrum of cells they target remain incompletely defined. In particular, although Treg directly suppress conventional T cells in vitro, they might also affect antigen presenting cells (APC). Here, we studied the maturation of human myeloid (mDC) and plasmacytoid (pDC) dendritic cells activated with Toll-like receptor (TLR) ligands in the presence of CD4+ CD25high regulatory T cells in vitro. T cells and DC subsets were purified from normal human peripheral blood. LPS, CpG ODN 2216 and R-848 were used to trigger the maturation of mDC, pDC or both through TLR4, TLR9 and TLR7/8 respectively. Preactivated CD4+ CD25high Treg had no effect on the maturation of pDC. Conversely, they strongly suppressed TLR-triggered mDC costimulatory molecules up-regulation, pro-inflammatory cytokines secretion and their antigen presentation capacity, as opposed to conventionnal T cells (Tconv). At a ratio of 3 Treg for 1 DC, the percentage of mDC acquiring CD80 was reduced 5 fold (from 75% to 16%) while the Mean Fluorescence Intensity was decreased by approximately 65% for CD80 and 35% for CD86 after LPS stimulation and by 50% and 20% after R-848 stimulation. Furthermore, Treg dramatically decreased the secretion of IL-12p40, TNF-α, and IL-6 by mDC (95%, 93% and 50% average inhibition respectively) after LPS activation and to a lesser but still significant extent (38%, 35%, and 38% average inhibition respectively) after R848 stimulation. Finally, we found that Treg-conditionned mDC had a reduced ability to trigger naïve T cell proliferation in a mixed leukocyte reaction. Suppression of mDC activation by Treg appeared to require cell-cell contact. Moreover, the inhibition of pro-inflammatory cytokines secretion, but not of phenotypic maturation, was almost completely restored using an anti-IL10 receptor monoclonal antibody, but not anti-TGFβ nor anti-CTLA-4 blocking antibodies. Those data suggest that Treg prevent the co-stimulatory molecules up-regulation on mDC through contact dependent mechanisms, while the modulation of cytokines secretion appears to be largely mediated by IL-10. Overall, our results provide the first evidence of a direct inhibition of human mDC but not pDC maturation by CD4+ CD25high Treg. Therefore, by restraining the maturation of mDC, human Treg may enlist those cells for the initiation and the amplification of tolerance in vivo.


Author(s):  
Ying Yu ◽  
Wenxian Ou-Yang ◽  
Hui Zhang ◽  
Tao Jiang ◽  
William C Cho ◽  
...  

Abstract Background High-mobility group box 1 (HMGB1) is one of the delayed pro-inflammatory cytokines produced in the later stages of pathogenesis and plays an important role in the progression of various inflammatory and autoimmune diseases. High-mobility group box 1 is able to stimulate interaction between integrins and cell adhesion molecules to facilitate cell-cell aggregation in “tissue-specific” endothelium; however, whether and how HMGB1 affects the adhesive capability of early acting immune cells in bloodstream remains largely unknown. Methods Human peripheral blood samples were collected from healthy adult donors. The CD4 T cells were isolated from blood using CD4 T cell isolation kit and identified using flow cytometry and immunofluorescence staining. The effect of HMGB1 on adhesive ability of CD4 T cells was accessed by cell self-aggregation assay and endothelial adhesion assay. The migratory ability of CD4 T cells was evaluated by cell migration assay. Secretion of pro-inflammatory cytokines or chemokine C-X-C motif chemokine 12 (CXCL12) were detected by ELISA. Expression of integrins β1, β7, and α4β7 were determined by flow cytometric analysis. Inhibition of integrins was achieved with anti-integrin antibodies or cyclic peptide inhibitors. Activation of signal transducers and activators of transcription 3 (STAT3) was measured by flow cytometry and fluorescent staining. Results High-mobility group box 1 facilitated CD4 T cell self-aggregation with simultaneous reduction of CD4 T single-cell counts in the bloodstream. The CD4 T cell self-aggregation induced by HMGB1 resulted in upregulation of integrins β1, β7, and α4β7; release of other pro-inflammatory cytokines or chemokine CXCL12; and activation of STAT3 signaling. Intriguingly, pro-inflammatory cytokines induced by HMGB1 could further amplify CD4 T cell self-aggregation. HMGB1 induced CD4 T cell apoptosis via activation of caspase-3/7. Furthermore, HMGB1 promoted migration and adhesion of CD4 T cells to endothelial cells. Conclusions These results provide proof of concept that HMGB1 promotes CD4 T cell self-aggregation before homing to inflammatory sites and highlight the potential of blocking immune cell self-aggregation in blood as a novel therapeutic approach against the development and progression of HMGB1-related inflammatory diseases. HMGB1 induces CD4 T cell self-aggregation in blood resulting in upregulation of integrins expression and release of pro-inflammatory cytokines/chemokines via activation of STAT3 signaling. This study highlights the potential of preventive and therapeutic intervention on immune cell self-aggregation in the bloodstream.


Data in Brief ◽  
2018 ◽  
Vol 18 ◽  
pp. 518-522
Author(s):  
Bongjun Kim ◽  
Jong-Ho Lee ◽  
Won Jong Jin ◽  
Hong-Hee Kim ◽  
Hyunil Ha ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2281-2281 ◽  
Author(s):  
Sowmya Parampalli Yajnanarayana ◽  
Isabelle Cornez ◽  
Annkristin Heine ◽  
Peter Brossart ◽  
Dominik Wolf

Abstract Introduction Recent discoveries of activating JAK mutations in patients with myeloproliferative diseases (MPNs) coupled with the so far known biology of JAKs in cytokine signaling provided the rationale for targeting these kinases in MPNs. Ruxolitinib (INCB018424) is the first JAK1/JAK2 inhibitor approved for treatment of patients with myelofibrosis (MF). Although ruxolitinib shows limited anti-clonal activity, a profound improvement of quality of life and splenomegaly in MF patients is observed and linked to a substantial reduction of MF-associated circulating pro-inflammatory cytokines and pro-angiogenic factors. JAK/STAT-signalling is known to be involved in the regulation of various immune cells including CD4+ T cells, which critically orchestrate inflammatory responses. To better understand how ruxolitinib is modulating CD4+ T cell response, we here provide an in depth analysis of CD4+ T cell function upon ruxolitinib exposure. Methods Highly purified CD4+ T cells isolated from healthy human PBMC from buffy coats were stimulated for 4 days with i) plate bound anti-CD3, ii) plate bound anti-CD3 and soluble anti-CD28 antibodies, iii) IL-2 in the presence of increasing concentrations of ruxolitinib (0.1µM – 10µM) or the respective vehicle control (DMSO). Phenotype and function were analyzed by flow cytometry. Cytokine production was quantified either by intracellular staining and subsequent flow cytometry or by flow-based bead assays (Human Th1/Th2 11plex FlowCytomix Multiplex). Proliferation was detected by CFSE dilution analysis using FACS. CD4+CD62L+ T cells obtained from C57BL/6 mice were isolated by using the CD4+CD62L+ T Cell Isolation Kit (Miltenyi Biotec) and subsequently differentiated into TH1, TH2, TH9, TH17 and iTreg. Polarization into the different CD4+ T cell subsets was induced by cytokine/antibody cocktails (TH1: IL-12 and anti-IL4; TH2: IL-4 and anti-IL12; TH9: IL-4, TGF-β and anti-IFNγ; iTreg: IL-2 and TGFβ; TH17: IL-6, TGFβ, IL-1b, anti-IFNγ and anti-IL4) together with anti-CD3 and anti-CD28. For analysis of apoptosis/necrosis induction, annexin/propidium iodide staining was applied. Signalling events were analyzed by phospho-flow technology to evaluate ruxolitinib-mediated changes of TCR- and/or cytokine-induced signalling cascades (using pS6, pSTAT1, pSTAT3, pSTAT5, pERK, pAKT, pP38, pFos, pJun and pZAP70 antibodies). Results CD4+ T cell proliferation is significantly and dose-dependently suppressed by ruxolitinib when T cells were activated by each of the three conditions tested. Of note, we could not detect any changes in the viability of ruxolitinib-exposed CD4+ T cells. In line with previous studies, production of pro-inflammatory cytokines such as IL-1β, IL-5, IL-6 and TNF-α were dose-dependently inhibited in ruxolitinib-exposed CD4+ T cells, although expression of the pro-inflammatory IL-8 was increased in a dose-dependent manner. Interestingly, despite the complete proliferation block, we also observed an increase in IL-2 and IFNγ particularly at the lower ruxolitinib concentrations (0.1μM) followed by a dose dependent reduction at higher dose-levels (10µM). After short-term activation of ruxolitinib-exposed CD4+ T cells by anti-CD3 and anti-CD28, proximal TCR signaling events (phosphorylation of SLP76 and ZAP70) were not affected, whereas a clear down-regulation of IL-2 induced STAT5 phosphorylation could be detected. After wash-out the ruxolitinib-induced inhibitory effects on CD4+ T cell function were fully reversible, as shown by induction of the T cell activation markers CD25 and CD69. Finally, we differentiated murine CD4+ naïve T cells into the various T Helper cell subsets and could provide clear evidence that the differentiation capacity of naïve CD4+ T cells into TH1, TH9, TH17 and iTreg was markedly reduced, whereas inhibition of Th2 differentiation was only marginally affected. The anti-inflammatory effects of ruxolitinib are currently tested in a TH9-dependent lung inflammation model in mice. Conclusion We could show that ruxolitinib potently affects CD4+ T cell biology. These data provide a rationale for testing JAK inhibitors in diseases triggered by hyperactive CD4+ T cells, such as autoimmune diseases. However, they also provide an explanation for the increased infection rates (i.e. viral reactivation and urinary tract infection) seen in ruxolitinib-treated patients. Disclosures: Wolf: Novartis: Honoraria, Research Funding.


Vaccine ◽  
2009 ◽  
Vol 27 (49) ◽  
pp. 6939-6949 ◽  
Author(s):  
Nicholas J. Steers ◽  
Kristina K. Peachman ◽  
Sasha McClain ◽  
Carl R. Alving ◽  
Mangala Rao

Sign in / Sign up

Export Citation Format

Share Document