Bovine dialyzable leukocyte extract modulates AP-1 DNA-binding activity and nuclear transcription factor expression in MCF-7 breast cancer cells

Cytotherapy ◽  
2008 ◽  
Vol 10 (2) ◽  
pp. 212-219 ◽  
Author(s):  
E. Mendoza-Gamboa ◽  
M.A. Franco-Molina ◽  
P. Zapata-Benavides ◽  
P. Castillo-Tello ◽  
M.E. Vera-García ◽  
...  
2016 ◽  
Vol 473 (8) ◽  
pp. 1047-1061 ◽  
Author(s):  
Vijaya Narasihma Reddy Gajulapalli ◽  
Venkata Subramanyam Kumar Samanthapudi ◽  
Madhusudana Pulaganti ◽  
Saratchandra Singh Khumukcham ◽  
Vijaya Lakhsmi Malisetty ◽  
...  

Oestrogen receptor-α (ERα) is a ligand-dependent transcription factor that primarily mediates oestrogen (E2)-dependent gene transcription required for mammary gland development. Coregulators critically regulate ERα transcription functions by directly interacting with it. In the present study, we report that ELF3, an epithelial-specific ETS transcription factor, acts as a transcriptional repressor of ERα. Co-immunoprecipitation (Co-IP) analysis demonstrated that ELF3 strongly binds to ERα in the absence of E2, but ELF3 dissociation occurs upon E2 treatment in a dose- and time-dependent manner suggesting that E2 negatively influences such interaction. Domain mapping studies further revealed that the ETS (E-twenty six) domain of ELF3 interacts with the DNA binding domain of ERα. Accordingly, ELF3 inhibited ERα’s DNA binding activity by preventing receptor dimerization, partly explaining the mechanism by which ELF3 represses ERα transcriptional activity. Ectopic expression of ELF3 decreases ERα transcriptional activity as demonstrated by oestrogen response elements (ERE)-luciferase reporter assay or by endogenous ERα target genes. Conversely ELF3 knockdown increases ERα transcriptional activity. Consistent with these results, ELF3 ectopic expression decreases E2-dependent MCF7 cell proliferation whereas ELF3 knockdown increases it. We also found that E2 induces ELF3 expression in MCF7 cells suggesting a negative feedback regulation of ERα signalling in breast cancer cells. A small peptide sequence of ELF3 derived through functional interaction between ERα and ELF3 could inhibit DNA binding activity of ERα and breast cancer cell growth. These findings demonstrate that ELF3 is a novel transcriptional repressor of ERα in breast cancer cells. Peptide interaction studies further represent a novel therapeutic option in breast cancer therapy.


2004 ◽  
Vol 32 (3) ◽  
pp. 649-661 ◽  
Author(s):  
A Inoue ◽  
Y Omoto ◽  
Y Yamaguchi ◽  
R Kiyama ◽  
SI Hayashi

Estrogen has been closely associated with the genesis and malignant progression of breast cancer. However, the molecular mechanism underlying the effects of estrogen is far from being completely clarified. We previously developed a custom-made cDNA microarray consisting of approximately 200 estrogen-responsive genes in breast cancer cells. Using this system, we found one estrogen-induced gene in various cancer cell lines, including breast cancer MCF-7 cells, which encode a zinc-finger transcription factor, EGR3 (early growth response 3). Northern blot analysis of estradiol-treated MCF-7 cells showed rapid and robust induction of Egr3, and addition of cycloheximide or ICI 182,780 suggested that Egr3 is the bona fide target for the estrogen receptor alpha (ERalpha). Using stable transformants derived from MCF-7 cells which were transfected with expression-controllable Egr3-expression vector, we demonstrated that Nab2 is one of the target genes for EGR3. Microarray analysis of the transformants revealed other candidate EGR3-induced genes. These strategies could be useful for analyzing downstream genes of ERalpha, and may contribute to elucidating the extensive signaling network of estrogen stimuli. Furthermore, a reporter assay using the upstream region of fasL probably involving escape from the immune system revealed that fasL is another target gene for EGR3. The roles of EGR3 in the physiology of breast cancer are discussed.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Frédéric Gradek ◽  
Osbaldo Lopez-Charcas ◽  
Stéphanie Chadet ◽  
Lucile Poisson ◽  
Lobna Ouldamer ◽  
...  

AbstractLoss of epithelial polarity and gain in invasiveness by carcinoma cells are critical events in the aggressive progression of cancers and depend on phenotypic transition programs such as the epithelial-to-mesenchymal transition (EMT). Many studies have reported the aberrant expression of voltage-gated sodium channels (NaV) in carcinomas and specifically the NaV1.5 isoform, encoded by the SCN5A gene, in breast cancer. NaV1.5 activity, through an entry of sodium ions, in breast cancer cells is associated with increased invasiveness, but its participation to the EMT has to be clarified. In this study, we show that reducing the expression of NaV1.5 in highly aggressive human MDA-MB-231 breast cancer cells reverted the mesenchymal phenotype, reduced cancer cell invasiveness and the expression of the EMT-promoting transcription factor SNAI1. The heterologous expression of NaV1.5 in weakly invasive MCF-7 breast cancer cells induced their expression of both SNAI1 and ZEB1 and increased their invasive capacities. In MCF-7 cells the stimulation with the EMT-activator signal TGF-β1 increased the expression of SCN5A. Moreover, the reduction of the salt-inducible kinase 1 (SIK1) expression promoted NaV1.5-dependent invasiveness and expression of EMT-associated transcription factor SNAI1. Altogether, these results indicated a prominent role of SIK1 in regulating NaV1.5-dependent EMT and invasiveness.


2020 ◽  
Author(s):  
Su-Hyeong Kim ◽  
Eun-Ryeong Hahm ◽  
Krishna B. Singh ◽  
Shivendra V. Singh

The transcription factor forkhead box Q1 (FoxQ1), which is overexpressed in different solid tumors, has emerged as a key player in the pathogenesis of breast cancer by regulating epithelial-mesenchymal transition, maintenance of cancer-stem like cells, and metastasis. However, the mechanism underlying oncogenic function of FoxQ1 is still not fully understood. In this study, we compared the RNA-seq data from FoxQ1 overexpressing SUM159 cells with that of empty vector-transfected control (EV) cells to identify novel mechanistic targets of this transcription factor. Consistent with published results in basal-like subtype, immunohistochemistry revealed upregulation of FoxQ1 protein in luminal-type human breast cancer tissue microarrays when compared to normal mammary tissues. Many previously reported transcriptional targets of FoxQ1 (e.g., E-cadherin, N-cadherin, fibronectin 1, etc.) were verified from the RNA-Seq analysis. FoxQ1 overexpression resulted in downregulation of genes associated with cell cycle checkpoints, M phase, and cellular response to stress/external stimuli as evidenced from the Reactome pathway analysis. Consequently, FoxQ1 overexpression resulted in S, G2M and mitotic arrest in basal-like SUM159 and HMLE cells, but not in luminal-type MCF-7 cells. There were differences in expression of cell cycle-associated proteins between FoxQ1 overexpressing SUM159 and MCF-7 cells. Finally, we show for the first time that FoxQ1 is a direct transcriptional regulator of interleukin (IL)-1α, IL-8, and vascular endothelial growth factor in breast cancer cells. Chromatin immunoprecipitation revealed FoxQ1 occupancy at the promoters of IL-1α, IL-8, and VEGF. In conclusion, the present study reports novel mechanistic targets of FoxQ1 in human breast cancer cells.


2019 ◽  
Vol 8 (3) ◽  
pp. 252-265 ◽  
Author(s):  
Cleofas Marcial-Medina ◽  
Alejandra Ordoñez-Moreno ◽  
Christian Gonzalez-Reyes ◽  
Pedro Cortes-Reynosa ◽  
Eduardo Perez Salazar

Free fatty acids (FFAs) are an energy source, and induce activation of signal transduction pathways that mediate several biological processes. In breast cancer cells, oleic acid (OA) induces proliferation, matrix metalloproteinase-9 (MMP-9) secretion, migration and invasion. However, the signal transduction pathways that mediate migration and invasion induced by OA in breast cancer cells have not been studied in detail. We demonstrate here that FFAR1 and FFAR4 mediate migration induced by OA in MDA-MB-231 and MCF-7 breast cancer cells. Moreover, OA induces migration, invasion, AKT1 and AKT2 activation, 12-LOX secretion and an increase of NFκB-DNA binding activity in breast cancer cells. Cell migration requires FFAR1, FFAR4, EGFR, AKT and PI3K activity, whereas invasion is mediated though a PI3K/Akt-dependent pathway. Furthermore, OA promotes relocalization of paxillin to focal contacts and it requires PI3K and EGFR activity, whereas NFκB-DNA binding activity requires PI3K and AKT activity.


Sign in / Sign up

Export Citation Format

Share Document