Asphalt and binder evaluation of asphalt mix with 70% reclaimed asphalt

2017 ◽  
Vol 18 (sup2) ◽  
pp. 66-75 ◽  
Author(s):  
L. Porot ◽  
D. Broere ◽  
M. Wistuba ◽  
J. Grönniger
2018 ◽  
Vol 162 ◽  
pp. 01037 ◽  
Author(s):  
Karim Al helo ◽  
Zaynab Qasim ◽  
Ahmed Majeed

This paper presented the effect of addition of Reclaimed Asphalt Pavement (RAP) on performance of mixture with (20%, 30%, 40% and 50%) RAP as proportion of asphalt mix. To compare with virgin mixture marshall flow and stability test was used to evaluated durability performance with (0,1,3, and 7) days immersion and Wheel Truck test was used to evaluated the resist to rutting. The best gradation and optimum asphalt content was selected according to Superpave system. Superpave Gyratory Compactor (SGC) was used to compact mixture with 100-mm diameter. The test results indicated that addition of RAP to mixes showed significant increase on resistance of Durability and Rutting.


Author(s):  
Fawaz Kaseer ◽  
Edith Arámbula-Mercado ◽  
Amy Epps Martin

State highway agencies recognize the environmental and economic benefits of utilizing reclaimed asphalt pavement (RAP) in asphalt mixes. Currently, most agencies assume all of the RAP binder content is available for mix design purposes. However, the percentage of available or effective RAP binder in the asphalt mix is usually less than 100% and not quantified, which could yield dry asphalt mix with a high air void content, potentially leading to premature distress. The term available or effective RAP binder refers to the binder that is released from the RAP, becomes fluid, and blends with virgin binder under typical mixing temperatures. This study proposes a method to estimate the RAP binder availability factor (BAF) which can be used to adjust the virgin binder content in RAP mixes to ensure that the mix design optimum binder content is achieved. In this method, asphalt mixes were prepared so that, after mixing and conditioning, the RAP material can be separated from the virgin aggregate, which allows for a thorough evaluation of the extent of RAP binder availability in the asphalt mix. This method was verified in a preliminary experiment and then used to estimate the BAF of RAP from different sources, and a correlation between RAP BAF and the high temperature performance grade (PG) of each RAP source was established. Finally, factors affecting the RAP BAF were also evaluated such as mixing temperature, conditioning period, the use of recycling agents (or rejuvenators), and the method of adding the recycling agent to the mix.


2021 ◽  
Vol 7 (9) ◽  
pp. 1529-1545
Author(s):  
Saad Tayyab ◽  
Arshad Hussain ◽  
Fazal Haq ◽  
Afaq Khattak

Sustainability and durability are the key requirements of pavement structure. Sustainability of asphalt pavement structure involves utilization of Warm Mix Asphalt (WMA) technologies with the addition of Reclaimed Asphalt Pavement (RAP), where durability of asphalt involves performance parameters like fatigue and fracture resistance properties etc. Utilizing the RAP content in asphalt mix increases the mixing and compaction temperature which may degrade the performance of asphalt. Hence, numerous studies have recommended different WMA technologies to decrease mixing and compaction temperature of asphalt mix containing RAP. The present research work evaluates the fatigue and fracture performance of WMA and Hot Mix Asphalt (HMA) with varying percentages of RAP and Sasobit. Different mixes of WMA and HMA were designed with varying percentages of RAP (0, 20, 40 and 60%) through Marshall Mix design. Sasobit (organic/wax-based additive) was used as WMA technology to prepare WMA at varying percentages (0, 2, 4 and 6%). The fatigue behavior of asphalt was evaluated using four-point bending test, where fracture resistance of asphalt was determined using Semi Circular Bending (SCB) test in the laboratory. Fatigue and fracture resistance of WMA were improved with the increase in percentages of Sasobit and RAP content, while the addition of RAP in HMA showed a decreasing trend of fatigue and fracture resistance due to the stiffer nature of RAP. Furthermore, WMA was identified as economical for construction besides other benefits like improved properties and environment friendly asphalt mix. Doi: 10.28991/cej-2021-03091741 Full Text: PDF


2014 ◽  
Vol 16 (6) ◽  
pp. 55-67 ◽  
Author(s):  
Ahmed Mohamady ◽  
◽  
Ashraf Elshahat ◽  
Mahmoud Fathy AbdElmaksoud ◽  
Mohamed Hoseny Abdallah

Sign in / Sign up

Export Citation Format

Share Document