scholarly journals Effects of exceeding stroke frequency of maximal effort on hand kinematics and hand propulsive force in front crawl

2020 ◽  
pp. 1-13
Author(s):  
Daiki Koga ◽  
Tomohiro Gonjo ◽  
Eisuke Kawai ◽  
Takaaki Tsunokawa ◽  
Shin Sakai ◽  
...  
2014 ◽  
Author(s):  
Rozaimi Ghazali ◽  
◽  
Asiah Mohd Pilus ◽  
Wan Mohd Bukhari Wan Daud ◽  
Mohd Juzaila Abd Latif ◽  
...  

Author(s):  
Otávio Joaquim Baratto de Azevedo ◽  
Clara Knierim Correia ◽  
Gustavo Soares Pereira ◽  
Luciano Sales Prado ◽  
Helio Roesler ◽  
...  

2018 ◽  
Vol 13 (7) ◽  
pp. 897-902 ◽  
Author(s):  
Pedro G. Morouço ◽  
Tiago M. Barbosa ◽  
Raul Arellano ◽  
João P. Vilas-Boas

Context: In front-crawl swimming, the upper limbs perform alternating movements with the aim of achieving a continuous application of force in the water, leading to lower intracyclic velocity variation (dv). This parameter has been identified as a crucial criterion for swimmers’ evaluation. Purpose: To examine the assessment of intracyclic force variation (dF) and to analyze its relationship with dv and swimming performance. Methods: A total of 22 high-level male swimmers performed a maximal-effort 50-m front-crawl time trial and a 30-s maximal-effort fully tethered swimming test, which were randomly assigned. Instantaneous velocity was obtained by a speedometer and force by a strain-gauge system. Results: Similarity was observed between the tests, with dF attaining much higher magnitudes than dv (P < .001; d = 8.89). There were no differences in stroke rate or in physiological responses between tethered and free swimming, with a high level of agreement for the stroke rate and blood lactate increase. Swimming velocity presented a strong negative linear relationship with dF (r = −.826, P < .001) and a moderate negative nonlinear relationship with dv (r = .734, P < .01). With the addition of the maximum impulse to dF, multiple-regression analysis explained 83% of the free-swimming performance. Conclusions: Assessing dF is a promising approach for evaluating a swimmer’s performance. From the experiments, this new parameter showed that swimmers with higher dF also present higher dv, leading to a decrease in performance.


2001 ◽  
Vol 17 (1) ◽  
pp. 28-42 ◽  
Author(s):  
Toshimasa Yanai

This study was conducted to describe the kinematics of bodyroll and investigate whether bodyroll was propelled primarily by the turning effect of the fluid forces (external torque) or by the reaction effect due to the acceleration of the limbs. The performances of 11 competitive swimmers were recorded using two panning periscopes, and the three-dimensional movement of the subjects was reconstructed from digitized video recordings. The external torque acting on the whole body was determined as the first time-derivative of the angular momentum of the whole body. The reaction effect of limb acceleration was determined as the first time-derivative of the angular momenta of the limbs. Shoulder roll and hip roll angles changed synchronously with the stroke frequency but their amplitudes were substantially different, indicating that the bodyroll consisted of a roll of the entire torso and a twist of the torso. The overall contribution of the external torque was to propel bodyroll, while that of the reaction effects of limb accelerations was to resist bodyroll. These results clearly indicate that the primary source for propelling bodyroll was the external torque. Implications towards the mechanical interactions among bodyroll, stroke frequency, and forward propulsion in front crawl swimming were discussed.


2005 ◽  
Vol 27 (03) ◽  
pp. 193-198 ◽  
Author(s):  
F. Potdevin ◽  
B. Bril ◽  
M. Sidney ◽  
P. Pelayo

2009 ◽  
Vol 25 (4) ◽  
pp. 304-312 ◽  
Author(s):  
Conor D. Osborough ◽  
Carl J. Payton ◽  
Daniel J. Daly

The purpose of this study was to determine the relationships between swimming speed (SS), stroke length (SL), and stroke frequency (SF) for competitive single-arm amputee front crawl swimmers and assess their relationships with anthropometric characteristics. Thirteen highly trained swimmers (3 male, 10 female) were filmed underwater from a lateral view during seven increasingly faster 25-m front crawl trials. Increases in SS (above 75% of maximum SS) were achieved by a 5% increase in SF, which coincided with a 2% decrease in SL. At SSmax, interswimmer correlations showed that SF was significantly related to SS (r= .72;p< .01) whereas SL was not. Moderate but nonsignificant correlations suggested that faster swimmers did not necessarily use longer and slower strokes to swim at a common submaximal speed when compared with their slower counterparts. No correlations existed between SL and any anthropometric characteristics. Biacromial breadth, shoulder girth, and upper-arm length all significantly correlated with the SF used at SSmax. These findings imply that as a consequence of being deprived of an important propelling limb, at fast swimming speeds SF is more important than SL in influencing the performance outcome of these single-arm amputee swimmers.


Author(s):  
R. Carmigniani ◽  
L. Seifert ◽  
D. Chollet ◽  
C. Clanet

We report the evolution of the coordination with velocity in front-crawl swimming which is used in competitions over a large range of distances (from 50 m up to 25 km in open-water races). Inside this single stroke, top-level swimmers show different patterns of arm organization. At low velocities, swimmers select an alternated stroke with gliding pauses during their propulsion. The relative duration of the gliding pauses on a stroke cycle is independent of the velocity in this first regime. Above a critical velocity, the relative duration of the gliding pauses starts to decrease as speed increases. Above a second critical velocity, the gliding pauses disappear and the swimmers start to superpose their propulsion phases. These three regimes are first revealed experimentally and then studied theoretically. It appears that below the first critical velocity, swimmers use a constant coordination index and vary their speed by varying their propulsive force to minimize their cost of propulsion. For larger velocities, swimmers use their maximum propulsive force and vary their recovery time to increase further their speed. The physical model developed is general and could be applied to understand other modes of locomotion.


Sign in / Sign up

Export Citation Format

Share Document