On the possibility of the direct imaging of point defects in crystals using transmission electron microscopy

1977 ◽  
Vol 35 (3) ◽  
pp. 575-592 ◽  
Author(s):  
W. Krakow ◽  
A. L. J. Chang ◽  
S. L. Sass
2019 ◽  
Vol 963 ◽  
pp. 399-402 ◽  
Author(s):  
Cristiano Calabretta ◽  
Massimo Zimbone ◽  
Eric G. Barbagiovanni ◽  
Simona Boninelli ◽  
Nicolò Piluso ◽  
...  

In this work, we have studied the crystal defectiveness and doping activation subsequent to ion implantation and post-annealing by using various techniques including photoluminescence (PL), Raman spectroscopy and transmission electron microscopy (TEM). The aim of this work was to test the effectiveness of double step annealing to reduce the density of point defects generated during the annealing of a P implanted 4H-SiC epitaxial layer. The outcome of this work evidences that neither the first 1 hour isochronal annealing at 1650 - 1700 - 1750 °C, nor the second one at 1500 °C for times between 4 hour and 14 hour were able to recover a satisfactory crystallinity of the sample and achieve dopant activations exceeding 1%.


2011 ◽  
Vol 79 ◽  
pp. 304-308
Author(s):  
Wang Li

We reported our detailed investigation of the microstructure and surface chemistry of nanoporous black Si layers using transmission electron microscopy techniques such as HRTEM, EDS, and EELS. We found that a one-step nanoparticle-catalyzed liquid etch creates deep conical nanovoids. The cones provide the density-graded surface that suppresses reflection. The surface of the as-etched nanoporous black Si is an amorphous Si suboxide (SiOx) produced by the strongly oxidizing nanocatalyzed etch. The c-Si/suboxide interface is rough at the nanometer scale and contains a high density of point defects.


1992 ◽  
Vol 262 ◽  
Author(s):  
H. L. Meng ◽  
S. Prusstn ◽  
K. S. Jones

ABSTRACTPrevious results [1] have shown that type II (end-of-range) dislocation loops can be used as point defect detectors and are efficient in measuring oxidation induced point defects. This study investigates the interaction between oxidation-induced point defects and dislocation loops when Ge+ implantation was used to form the type II dislocation loops. The type II dislocation loops were introduced via Ge+ implants into <100> Si wafers at 100 keV to at doses ranging from 2×1015 to l×1016/cm2. The subsequent furnace annealing at 900 °C was done for times between 30 min and 4 hr in either a dry oxygen or nitrogen ambient. The change in atom concentration bound by dislocation loops as a result of oxidation was measured by plan-view transmission electron microscopy (PTEM). The results show that the oxidation rate for Ge implanted Si is similar to Si+ implanted Si. Upon oxidation a decrease in the interstitial injection was observed for the Ge implanted samples relative to the Si implanted samples. With increasing Ge+ dose the trapped atom concentration bound by the loops actually decreases upon oxidation relative to the inert ambient implying oxidation of Ge+ implanted silicon can result in either vacancy injection or the formation of an interstitial sink.


Sign in / Sign up

Export Citation Format

Share Document