Wave energy exploitation in the Ionian Sea Hellenic coasts: spatial planning of potential wave power stations

2018 ◽  
Vol 38 (4) ◽  
pp. 312-332 ◽  
Author(s):  
John K. Kaldellis ◽  
Theodoris Chrysikos
Omni-Akuatika ◽  
2020 ◽  
Vol 16 (3) ◽  
pp. 61
Author(s):  
Risandi Dwirama Putra ◽  
Ibnu Kahfi Bachtiar ◽  
Tri Nur Cahyo ◽  
Mario Putra Suhana ◽  
Oksto Ridho Sianturi ◽  
...  

Energy and electricity demand in Riau Islands is increasing rapidly due to the fast-growing population, urbanization, industrial development, and economic growth. The limitations of energy and electricity in the Riau Islands caused frequent blackouts. To support the high demand for energy and electricity in the Riau Islands, renewable energy is the most suitable alternative energy solution. Renewable energy is not only playing a key role in providing energy but also providing long-term clean and sustainable energy. We investigated the wave energy potential in the Riau Islands Sea in four different consecutive monsoons (North monsoon, East monsoon, South Monsoon and West Monsoon) using ECMWF data during January 2018 to December 2018 with 0.125o x 0.125o and 6 hourly spatial and temporal resolutions. We extracted bathymetry data from NOAA’s database ETOPO1 and forecasting wave characteristics use the SPM (Shore Protection Manual) method. The potential wave energy simulation from significant wave height (Hs) and energy period (Te) was shown in spatial distribution based on different monsoon. Our studies found that the potential wave energy was higher in north monsoon with maximum spatial of wave power density 3.240 – 3.640 kW.m-1. The east monsoon tended to be lower potential wave energy with dominance of wave power density at 0 – 0.127 kW.m-1. Keywords: wave power density, potential wave energy, ECWFM, monsoon


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3668
Author(s):  
Anders H. Hansen ◽  
Magnus F. Asmussen ◽  
Michael M. Bech

Model predictive control based wave power extraction algorithms have been developed and found promising for wave energy converters. Although mostly proven by simulation studies, model predictive control based algorithms have shown to outperform classical wave power extraction algorithms such as linear damping and reactive control. Prediction models and objective functions have, however, often been simplified a lot by for example, excluding power take-off system losses. Furthermore, discrete fluid power forces systems has never been validated experimentally in published research. In this paper a model predictive control based wave power extraction algorithm is designed for a discrete fluid power power take-off system. The loss models included in the objective function are based on physical models of the losses associated with discrete force shifts and throttling. The developed wave power extraction algorithm directly includes the quantized force output and the losses models of the discrete fluid power system. The experimental validation of the wave power extraction algorithm developed in the paper shown an increase of 14.6% in yearly harvested energy when compared to a reactive control algorithm.


Author(s):  
Brian Stiber ◽  
Asfaw Beyene

Climate change, drought, population growth and increased energy and water costs are all forces driving exploration into alternative, sustainable resources. The abundance of untapped wave energy often presents an opportunity for research into exploiting this resource to meet the energy and water needs of populated coastal regions. This paper investigates the potential and impact of harnessing wave energy for the purpose of seawater desalination. First the SWAN wave modeling software was used to evaluate the size and character of the wave resource. These data are used to estimate the cost of water for wave-powered desalination taking a specific region as a case example. The results indicate that, although the cost of water from this technology is not economically competitive at this time, the large available resource confirms the viability of significantly supplementing current freshwater supplies. The results also confirm that research into the feasibility of wave power as a source of energy and water in the area is warranted, particularly as water and energy become more scarce and expensive coinciding with the maturity of commercial wave energy conversion.


Author(s):  
Jose V. Taboada ◽  
Hirpa G. Lemu

This paper describes a wave energy analysis of North Atlantic waters and provides an overview of the available resources. The analysis was conducted using a scatter diagram data combined with wave statistics and empirical parameters given by wave height and periods. Such an overview is instrumental for modelling of wave energy sources, design of wave energy converter (WEC) devices and determination of locations of the devices. Previous survey of wave energy resources widely focused on determination of the reliability on installations of WECs. Though the renewable energy source that can be utilized from the waves is huge, the innovative work in design and development of WECs is insignificant and the available technologies still require further optimization. Furthermore, the wave potential of North Atlantic waters is not sufficiently studied and documented. Closer review of the literature also shows that wave energy conversion technology, compared with other conversion machines of renewable energy sources such as wind energy and solar energy, seems still immature and most of the research and development efforts in this direction are limited in scope. The design of energy converters is also highly dictated by the wave energy resource intensity distribution, which varies from North to South hemisphere. The immaturity of the technology can be attributed to several factors. Since there are a number of uncertainties on the accuracy of wave data, the design, location and installation of WECs face a number of challenges in terms of their service life, structural performance and topological configuration. As a result, collection and assessment of wave characteristics and the wave state conditions data serve as key inputs for development of robust, reliable, operable and affordable wave energy converters. The fact that a number of variables are involved in wave distribution characteristics and the extraction of wave power, treating these variables in the design process imposes immense challenges for the design optimization and hence the optimum energy conversion. The conversion machines are expected to extract as high wave energy as possible while their structural performance is ensured. The study reported in this paper is to analyse wave data over several years of return periods with a detailed validation for wave statistics and wave power. The analysis is intended to contribute in better understanding of the wave characteristics with influencing parameters that can serve as design optimization parameters. A method is proposed to conduct a survey and analysis of the available wave energy resources and the potential at cited locations. The paper concludes that wave energy data accuracy is the baseline for project scoping, coastal and offshore design, and environmental impact assessments.


2021 ◽  
Vol 893 (1) ◽  
pp. 012050
Author(s):  
M N Habibie ◽  
M A Marfai ◽  
H Harsa ◽  
U A Linarka

Abstract Future energy becomes a concern all over the country. The fossil energy resources are decreasing now, and the exploitation these resources leave behind environmental problems. It was increasing the gas emission of CO2 and affected global warming. Renewable and environmentally friendly energy resource is the right choice to solve the problem. Wave power is one of the marine resources that have an advantage in hight density and continuity. This research aims to investigate the spatial-temporal distribution of wave power potency. This study location between 90°E – 150°E; 15°N – 15°S. We used a hindcast data simulation of WAVEWATCH-III with 0.125° (~14 km) spatial resolution and six-hourly data for 25 years (1991-2015). We determine the potential wave power resources by considering the wave flux, Presence of Exceedance (PE), Coefficient of Variation (Cv), Monthly Variability Index (MV), and Seasonal Variability Index (SV). The result shows that in the open sea, such as the Indian Ocean and Pacific Ocean, contains higher wave power density. The level of stability shows that this area is more stable than the inner sea. The power density changes periodically conducted with the monsoonal cycle. The highest energy flux in the Indian Ocean achieved when Australian monsoon and lowest when Asian monsoon, whereas in the Pacific Ocean, the peak of power density reaches when Asian monsoon onset and the lowest in June-July-August. The most stable level coherent with the highest power density, and the lowest level is in the transition period. Based on this analysis, the most potential areas for wave power development are in Enggano, Lampung, Banten, West Java, Central Java, DIY, East Java until Bali.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2633
Author(s):  
Addy Wahyudie ◽  
Tri Bagus Susilo ◽  
Fatima Alaryani ◽  
Cuk Supriyadi Ali Nandar ◽  
Mohammed Abdi Jama ◽  
...  

An assessment of the wave power at the southern coast of the middle part of Java Island (Indonesia) was conducted based on a 15-year hindcast spectral wave model using the MIKE 21 Spectral Wave software. The model was forced with wind data with a 0.125° spatial interval and hourly time resolution. The obtained model was validated with field data collected from a buoy station that provided a set of significant wave height data with an hourly data interval for the whole month of June 2014. The validation showed that the obtained model matched the observed data with a minor average error. A spatial analysis was conducted in order to find the most suitable location for installing wave energy converters while taking into consideration the potential area demand, the wave power intensity, and the distance from the shore. Moreover, spatial analysis is conducted in order to find a suitable location to install wave energy converters, with consideration to potential area demand, wave power intensity, and distance from the shore. The best prospective location reached 30 kW/m of mean wave power intensity, 2.04 m of mean significant wave height, 8.9 s of mean wave period, 150 m of distance from the shoreline.


Sign in / Sign up

Export Citation Format

Share Document