Invasive species information networks: collaboration at multiple scales for prevention, early detection, and rapid response to invasive alien species

Biodiversity ◽  
2009 ◽  
Vol 10 (2-3) ◽  
pp. 5-13 ◽  
Author(s):  
Annie Simpson ◽  
Catherine Jarnevich ◽  
John Madsen ◽  
Randy Westbrooks ◽  
Christine Fournier ◽  
...  
Oryx ◽  
2018 ◽  
Vol 53 (4) ◽  
pp. 782-786 ◽  
Author(s):  
Félix M. Medina ◽  
Marta López-Darias ◽  
Julien C. Piquet

AbstractDespite efforts to combat invasive species, further measures are still required to prevent their arrival and translocation, especially into biodiverse island ecosystems. Although many governments worldwide have already established protocols to control alien species, the European outermost regions have yet to implement fully effective prevention or rapid response procedures. The numerous translocations of the invasive Barbary ground squirrel Atlantoxerus getulus within the Canary Islands illustrate this problem. From 1996 to 2016 at least 2.1 individuals per year have been moved from Fuerteventura to other islands. If movements of these medium-sized vertebrates are taking place regularly, the number of smaller species transported within the archipelago could potentially be greater. We argue that it is essential to implement stricter strategies for invasive species control in these remote biodiversity-rich islands, including early detection and rapid response, to minimize impacts on native biodiversity.


Genome ◽  
2016 ◽  
Vol 59 (11) ◽  
pp. 1023-1031 ◽  
Author(s):  
Vernon G. Thomas ◽  
Robert H. Hanner ◽  
Alex V. Borisenko

Managing invasive alien species in Canada requires reliable taxonomic identification as the basis of rapid-response management. This can be challenging, especially when organisms are small and lack morphological diagnostic features. DNA-based techniques, such as DNA barcoding, offer a reliable, rapid, and inexpensive toolkit for taxonomic identification of individual or bulk samples, forensic remains, and even environmental DNA. Well suited for this requirement, they could be more broadly deployed and incorporated into the operating policy and practices of Canadian federal departments and should be authorized under these agencies’ articles of law. These include Fisheries and Oceans Canada, Canadian Food Inspection Agency, Transport Canada, Environment Canada, Parks Canada, and Health Canada. These efforts should be harmonized with the appropriate provisions of provincial jurisdictions, for example, the Ontario Invasive Species Act. This approach necessitates that a network of accredited, certified laboratories exists, and that updated DNA reference libraries are readily accessible. Harmonizing this approach is vital among Canadian federal agencies, and between the federal and provincial levels of government. Canadian policy and law must also be harmonized with that of the USA when detecting, and responding to, invasive species in contiguous lands and waters. Creating capacity in legislation for use of DNA-based identifications brings the authority to fund, train, deploy, and certify staff, and to refine further developments in this molecular technology.


2018 ◽  
Vol 2 ◽  
pp. e24749
Author(s):  
Quentin Groom ◽  
Tim Adriaens ◽  
Damiano Oldoni ◽  
Lien Reyserhove ◽  
Diederik Strubbe ◽  
...  

Reducing the damage caused by invasive species requires a community approach informed by rapidly mobilized data. Even if local stakeholders work together, invasive species do not respect borders, and national, continental and global policies are required. Yet, in general, data on invasive species are slow to be mobilized, often of insufficient quality for their intended application and distributed among many stakeholders and their organizations, including scientists, land managers, and citizen scientists. The Belgian situation is typical. We struggle with the fragmentation of data sources and restrictions to data mobility. Nevertheless, there is a common view that the issue of invasive alien species needs to be addressed. In 2017 we launched the Tracking Invasive Alien Species (TrIAS) project, which envisages a future where alien species data are rapidly mobilized, the spread of exotic species is regularly monitored, and potential impacts and risks are rapidly evaluated in support of policy decisions (Vanderhoeven et al. 2017). TrIAS is building a seamless, data-driven workflow, from raw data to policy support documentation. TrIAS brings together 21 different stakeholder organizations that covering all organisms in the terrestrial, freshwater and marine environments. These organizations also include those involved in citizen science, research and wildlife management. TrIAS is an Open Science project and all the software, data and documentation are being shared openly (Groom et al. 2018). This means that the workflow can be reused as a whole or in part, either after the project or in different countries. We hope to prove that rapid data workflows are not only an indispensable tool in the control of invasive species, but also for integrating and motivating the citizens and organizations involved.


2020 ◽  
Vol 6 ◽  
Author(s):  
Stelios Katsanevakis ◽  
Konstantinos Tsirintanis ◽  
Maria Sini ◽  
Vasilis Gerovasileiou ◽  
Nikoletta Koukourouvli

ALAS aims to fill knowledge gaps on the impacts of marine alien species in the Aegean Sea, and support marine managers and policy makers in prioritizing mitigation actions. The project will focus on under-studied alien-native interactions, priority and vulnerable habitats (such as shallow forests of canopy algae and underwater caves), and apply a multitude of approaches. It will apply a standardized, quantitative method for mapping Cumulative IMpacts of invasive Alien species on marine ecosystems (CIMPAL), according to which cumulative impact scores are estimated on the basis of the distributions of invasive species and ecosystems, and both the reported magnitude of ecological impacts and the strength of such evidence. Towards that direction, ALAS will improve our knowledge base and compile the needed information to estimate CIMPAL by (1) conducting a series of field experiments and surveys to investigate the impacts of selected invasive alien species on marine habitats, (2) producing high-resolution habitat maps in the coastal zone, refining the results of previous research efforts through fieldwork, remote sensing and satellite imaging, (3) producing species distribution models for all invasive species, based on extensive underwater surveys for the collection of new data and integrating all existing information. ALAS will incorporate skills and analyses in novel ways and provide high-resolution results at a large scale; couple classic and novel tools and follow a trans-disciplinary approach, combining knowledge from the fields of invasion biology, conservation biology, biogeography, fisheries science, marine ecology, remote sensing, statistical modelling; conduct for the first time in the Aegean Sea a comprehensive, high-resolution analysis of cumulative impacts of invasive alien species; and report results in formats appropriate for decision-makers and society, thus transferring research-based knowledge to inform and influence policy decisions.


2019 ◽  
Vol 22 (1) ◽  
pp. 129-146 ◽  
Author(s):  
Jhoset Burgos-Rodríguez ◽  
Stanley W. Burgiel

AbstractThe ability of federal agencies to carry out actions or programs is based on their legal authorities. Efforts to improve federal capacities for the early detection of and rapid response to invasive species (EDRR) require careful delineation of legal authorities, regulations, and policies that would enable or limit EDRR. Building on information provided by federal agencies and an inspection of the US Code and the Code of Federal Regulations, we review and identify relevant authorities to determine federal legal capacities, gaps, and inconsistencies to address EDRR. The EDRR process can be examined in the context of four categories, including (1) explicit invasive species authorities, (2) emergency authorities that could be triggered during a crisis or serve as models for enhanced invasive species EDRR authorities, (3) supporting authorities that could be used under agency discretion, and (4) constraining authorities and legal requirements. Although the Plant Protection Act and the Animal Health Protection Act are comprehensive authorities that address the detection of and response to organisms that threaten plant and livestock health, there is no single authority that encompasses EDRR for all invasive species. Rather, there is a patchwork of authorities that unevenly addresses various aspects of EDRR. In addition to gaps in authority, EDRR efforts could be constrained by environmental compliance, as well as subnational governance and private rights. Although some of these gaps could be closed through legislation, others need to be addressed using the discretionary power of federal agencies and their ability to establish cooperation mechanisms with private and subnational entities.


2020 ◽  
Author(s):  
Boris Leroy ◽  
Andrew M Kramer ◽  
Anne-Charlotte Vaissière ◽  
Franck Courchamp ◽  
Christophe Diagne

Aim: Large-scale datasets are becoming increasingly available for macroecological research from different disciplines. However, learning their specific extraction and analytical requirements can become prohibitively time-consuming for researchers. We argue that this issue can be tackled with the provision of methodological frameworks published in open-source software. We illustrate this solution with the invacost R package, an open-source software designed to query and analyse the global database on reported economic costs of invasive alien species, InvaCost. Innovations: First, the invacost package provides updates of this dynamic database directly in the analytical environment R. Second, it helps understand the nature of economic cost data for invasive species, their harmonisation process, and the inherent biases associated with such data. Third, it readily provides complementary methods to query and analyse the costs of invasive species at the global scale, all the while accounting for econometric statistical issues. Main conclusions: This tool will be useful for scientists working on invasive alien species, by (i) facilitating access and use to this multi-disciplinary data resource and (ii) providing a standard procedure which will facilitate reproducibility and comparability of studies, one of the major critics of this topic until now. We discuss how the development of this R package was designed as an enforcement of general recommendations for transparency, reproducibility and comparability of science in the era of big data in ecology.


Phytotaxa ◽  
2018 ◽  
Vol 382 (2) ◽  
pp. 204
Author(s):  
JEN-YU WANG ◽  
JENN-CHE WANG

Invasive plants had raised lots of concern about the environment and biodiversity. Many members of Asteraceae are notorious invasive alien species across the world. In Taiwan, Emilia (Asteraceae) contains one native and two naturalized species. Recently, we found some morphologically intermediate individuals between the native E. sonchifolia var. javanica and the alien E. praetermissa from northern Taiwan where the latter two grow sympatrically. Based on morphological comparisons, pollen viability and flow cytometry information, we confirmed the fact of natural hybridization. Herein, we describe a new hybrid Emilia ×latens J.-Y Wang & J.-C. Wang and provide a key to Emilia species in Taiwan.


Sign in / Sign up

Export Citation Format

Share Document