Emerging natural hybrid between Invasive Species and Native Congener of Emilia (Asteraceae) Found in Northern Taiwan

Phytotaxa ◽  
2018 ◽  
Vol 382 (2) ◽  
pp. 204
Author(s):  
JEN-YU WANG ◽  
JENN-CHE WANG

Invasive plants had raised lots of concern about the environment and biodiversity. Many members of Asteraceae are notorious invasive alien species across the world. In Taiwan, Emilia (Asteraceae) contains one native and two naturalized species. Recently, we found some morphologically intermediate individuals between the native E. sonchifolia var. javanica and the alien E. praetermissa from northern Taiwan where the latter two grow sympatrically. Based on morphological comparisons, pollen viability and flow cytometry information, we confirmed the fact of natural hybridization. Herein, we describe a new hybrid Emilia ×latens J.-Y Wang & J.-C. Wang and provide a key to Emilia species in Taiwan.

2009 ◽  
Vol 4 (10) ◽  
pp. 1934578X0900401
Author(s):  
Peihong Fan ◽  
Andrew Marston

The phenomenon of invasive alien species has become one of the greatest threats to the biological diversity of the planet, placing major constraints on development. In order to provide the tools needed to address this pervasive issue, the current knowledge on invasive species must be further developed with a cross-sectoral and multidisciplinary approach. Recent theories of invasion propose that exotic plants probably produce secondary metabolites which can be allelopathic, antiherbivore, antimicrobial and which are either unique or underrepresented in the plants’ new range. This review attempts to attract the attention of phytochemists to study either the mechanisms of plant invasion or to use this widespread plant resource for humans.


2007 ◽  
Vol 87 (5) ◽  
pp. 989-992 ◽  
Author(s):  
D. R. Clements ◽  
P. M. Catling

The field of invasive species biology has been growing rapidly in the past decade, spurred on by the US Executive Order on invasive species in 1999. Despite calls to deal with invasive alien species under the International Convention on Biological Diversity in 1992, Canada has been slow to act. Part of the difficulty in managing alien invasive species effectively lies in the lack of ecological knowledge. The Canadian strategy on invasive alien terrestrial plants developed recently by the Canadian Food Inspection Agency sees research as a critical component of the strategy, including study of the biology and ecology of invasive plants. A symposium on ecology and invasive plant species at the Plant Canada meeting in 2007 in Saskatoon served to explore some emerging research in Canada, particularly focusing on Canada’s prairie region. Papers derived from five of the presentations are presented here and illustrate well the continuing challenge of applying ecological principles to the complex issues surrounding invasive plants. Canadian ecologists have made a significant contribution, but much remains to be done along the lines of the simple studies provided in this symposium. Key words: Invasive alien species, prairie region, biodiversity, ecological research


2018 ◽  
Vol 2 ◽  
pp. e25306
Author(s):  
Shyama Pagad

The Global Register of Introduced and Invasive Species (GRIIS) presents annotated country checklists of introduced and invasive species. Annotations include higher taxonomy of the species, synonyms, environment/system in which the species occurs, and its biological status in that country. Invasiveness is classified by evidenced impact in that country. Draft country checklists are subjected to a process of validation and verification by networks of country experts. Challenges encountered across the world include confusion with alien/invasive species terminology, classification of the ‘invasive’ status of an alien species and issues with taxonomic synonyms.


2018 ◽  
Vol 2 ◽  
pp. e24749
Author(s):  
Quentin Groom ◽  
Tim Adriaens ◽  
Damiano Oldoni ◽  
Lien Reyserhove ◽  
Diederik Strubbe ◽  
...  

Reducing the damage caused by invasive species requires a community approach informed by rapidly mobilized data. Even if local stakeholders work together, invasive species do not respect borders, and national, continental and global policies are required. Yet, in general, data on invasive species are slow to be mobilized, often of insufficient quality for their intended application and distributed among many stakeholders and their organizations, including scientists, land managers, and citizen scientists. The Belgian situation is typical. We struggle with the fragmentation of data sources and restrictions to data mobility. Nevertheless, there is a common view that the issue of invasive alien species needs to be addressed. In 2017 we launched the Tracking Invasive Alien Species (TrIAS) project, which envisages a future where alien species data are rapidly mobilized, the spread of exotic species is regularly monitored, and potential impacts and risks are rapidly evaluated in support of policy decisions (Vanderhoeven et al. 2017). TrIAS is building a seamless, data-driven workflow, from raw data to policy support documentation. TrIAS brings together 21 different stakeholder organizations that covering all organisms in the terrestrial, freshwater and marine environments. These organizations also include those involved in citizen science, research and wildlife management. TrIAS is an Open Science project and all the software, data and documentation are being shared openly (Groom et al. 2018). This means that the workflow can be reused as a whole or in part, either after the project or in different countries. We hope to prove that rapid data workflows are not only an indispensable tool in the control of invasive species, but also for integrating and motivating the citizens and organizations involved.


2020 ◽  
Vol 6 ◽  
Author(s):  
Stelios Katsanevakis ◽  
Konstantinos Tsirintanis ◽  
Maria Sini ◽  
Vasilis Gerovasileiou ◽  
Nikoletta Koukourouvli

ALAS aims to fill knowledge gaps on the impacts of marine alien species in the Aegean Sea, and support marine managers and policy makers in prioritizing mitigation actions. The project will focus on under-studied alien-native interactions, priority and vulnerable habitats (such as shallow forests of canopy algae and underwater caves), and apply a multitude of approaches. It will apply a standardized, quantitative method for mapping Cumulative IMpacts of invasive Alien species on marine ecosystems (CIMPAL), according to which cumulative impact scores are estimated on the basis of the distributions of invasive species and ecosystems, and both the reported magnitude of ecological impacts and the strength of such evidence. Towards that direction, ALAS will improve our knowledge base and compile the needed information to estimate CIMPAL by (1) conducting a series of field experiments and surveys to investigate the impacts of selected invasive alien species on marine habitats, (2) producing high-resolution habitat maps in the coastal zone, refining the results of previous research efforts through fieldwork, remote sensing and satellite imaging, (3) producing species distribution models for all invasive species, based on extensive underwater surveys for the collection of new data and integrating all existing information. ALAS will incorporate skills and analyses in novel ways and provide high-resolution results at a large scale; couple classic and novel tools and follow a trans-disciplinary approach, combining knowledge from the fields of invasion biology, conservation biology, biogeography, fisheries science, marine ecology, remote sensing, statistical modelling; conduct for the first time in the Aegean Sea a comprehensive, high-resolution analysis of cumulative impacts of invasive alien species; and report results in formats appropriate for decision-makers and society, thus transferring research-based knowledge to inform and influence policy decisions.


2020 ◽  
Author(s):  
Boris Leroy ◽  
Andrew M Kramer ◽  
Anne-Charlotte Vaissière ◽  
Franck Courchamp ◽  
Christophe Diagne

Aim: Large-scale datasets are becoming increasingly available for macroecological research from different disciplines. However, learning their specific extraction and analytical requirements can become prohibitively time-consuming for researchers. We argue that this issue can be tackled with the provision of methodological frameworks published in open-source software. We illustrate this solution with the invacost R package, an open-source software designed to query and analyse the global database on reported economic costs of invasive alien species, InvaCost. Innovations: First, the invacost package provides updates of this dynamic database directly in the analytical environment R. Second, it helps understand the nature of economic cost data for invasive species, their harmonisation process, and the inherent biases associated with such data. Third, it readily provides complementary methods to query and analyse the costs of invasive species at the global scale, all the while accounting for econometric statistical issues. Main conclusions: This tool will be useful for scientists working on invasive alien species, by (i) facilitating access and use to this multi-disciplinary data resource and (ii) providing a standard procedure which will facilitate reproducibility and comparability of studies, one of the major critics of this topic until now. We discuss how the development of this R package was designed as an enforcement of general recommendations for transparency, reproducibility and comparability of science in the era of big data in ecology.


2021 ◽  
Vol 9 ◽  
Author(s):  
Pedro Morais ◽  
João Encarnação ◽  
Maria Alexandra Teodósio ◽  
Ester Dias

About 3.1 billion people around the world live within 100 km of the coastline. If you are one of those people, then you also live near an estuary. What you probably do not know is that many alien species live in this underwater world, and we are not talking about extraterrestrial species from outer space. Are you scared? Well, do not be! These alien species are from planet Earth. In this article, we will tell you what alien species are, why scientists study them, how any species may become an alien, and how a few alien species may become an invasive species. You will also learn how you can help scientists find and track alien species, and how to defeat them. Along the way, we will give examples of alien species living in the San Francisco Estuary in North America, a paradise for hundreds of alien species.


<em>Abstract.</em>—In Japan, natural populations of three snakeheads have been established: Northern Snakehead <em>Channa argus</em>, Blotched Snakehead <em>C. maculata</em>, and Small Snakehead <em>C. asiatica</em>. Historical literature indicates that <em>C. argus </em>was brought into Japan during the period of national isolation in the early modern period. After the nation’s closure period, the former two species were introduced before World War II for food resources, whereas the last was found in Japan after the war. <em>Channa argus </em>was cultured in irrigation ponds in some prefectures, but ecological invasiveness was a concern because of their predatory nature and nonindigenous origins. When new national legislation controlling invasive alien species began in 2005, three snakeheads appeared on the list of alien species requiring special attention. However, there is little evidence suggesting ecological invasiveness of snakeheads in Japan in recent years. The most recent national list of invasive species in 2016 included no snakeheads. In some water bodies, <em>C. argus </em>is actively used as the ecological agent to control other invasive alien species.


2019 ◽  
Vol 78 ◽  
pp. 348-358
Author(s):  
Emilia Nawrotek

Invasive alien species are a threat to biodiversity and food security, health and economic development. These species are causing enormous damage to biodiversity and the valuable natural agricultural systems upon which we depend. Globalisation, trade, travel, and transport of goods across borders they have facilitated the spread of invasive alien species. The spread of invasive alien species is now recognised as one of the greatest threats to the ecological and economic well being of the planet. The aim of the article is to analyze and attempt to assess the legal regulation relating protection native species against alien invasive species and alien species.


Sign in / Sign up

Export Citation Format

Share Document