scholarly journals Coarse Woody Debris Dynamics Following Biomass Harvesting: Tracking Carbon and Nitrogen Patterns During Early Stand Development in Upland Black Spruce Ecosystems

2012 ◽  
Vol 23 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Scott Wiebe ◽  
Dave Morris ◽  
Nancy Luckai ◽  
Doug Reid
1994 ◽  
Vol 24 (10) ◽  
pp. 1989-1996 ◽  
Author(s):  
Glenn H. Stewart ◽  
Larry E. Burrows

The volume, biomass, and carbon and nitrogen content of coarse woody debris were measured on three 1-ha reference plots in old-growth Nothofagusfusca (Hook. f.) Oerst.–Nothofagusmenziesii (Hook. f.) Oerst. forest on the South Island of New Zealand. Two decay sequences for logs and one for standing dead trees (snags) were recognised from two-way indicator species analysis (TWINSPAN) of up to 30 variables related to physical characteristics and structural integrity. Wood volume (up to 800 m3•ha−1) and biomass were high (up to 300 Mg•ha−1), and the inside-out decay sequence from heartwood to sapwood was unusual compared with that of other temperate hardwood forests. Coarse woody debris represented significant carbon and nitrogen pools, with ca. 150 Mg•ha−1 and 370 kg•ha−1, respectively, in one stand. The coarse woody debris component of these broad-leaved evergreen hardwood forests was much higher than that reported for other temperate hardwood forests and approaches that of many northern hemisphere conifer forests. The large coarse woody debris pools are discussed in relation to live stand biomass, natural disturbances and tree mortality, and decomposition processes.


2021 ◽  
Vol 4 ◽  
Author(s):  
Jeffrey Opoku-Nyame ◽  
Alain Leduc ◽  
Nicole J. Fenton

Clear cut harvest simplifies and eliminates old growth forest structure, negatively impacting biodiversity. Partial cut harvest has been hypothesized (1) to have less impact on biodiversity than clear cut harvest, and (2) to encourage old growth forest structures. Long-term studies are required to test this hypothesis as most studies are conducted soon after harvest. Using epixylic bryophytes as indicators, this study addresses this knowledge gap. Fourteen years after harvest, we examined changes in epixylic bryophyte community composition richness and traits, and their microhabitats (coarse woody debris characteristics and microclimate) along an unharvested, partial cuts and clear cuts harvest treatment in 30 permanent plots established in the boreal black spruce (Picea mariana) forests of northwestern Quebec, Canada. Our results were compared to those of an initial post-harvest study (year 5) and to a chronosequence of old growth forests to examine species changes over time and the similarity of bryophyte communities in partial cut and old growth forests. Coarse woody debris (CWD) volume by decay class varied among harvest treatments with partial cuts and clear cuts recording lower volumes of early decay CWD. The epixylic community was richer in partial cuts than in mature unharvested forests and clear cuts. In addition, species richness and overall abundance doubled in partial and clear cuts between years 5 and 14. Species composition also differed among treatments between years 5 and 14. Furthermore, conditions in partial cut stands supported small, drought sensitive, and old growth confined species that are threatened by conditions in clear cut stands. Lastly, over time, species composition in partial cuts became more similar to old growth forests. Partial cuts reduced harvest impacts by continuing to provide favorable microhabitat conditions that support epixylic bryophytes. Also, partial cut harvest has the potential to encourage old growth species assemblages, which has been a major concern for biodiversity conservation in managed forest landscapes. Our findings support the promotion of partial cut harvest as an effective strategy to achieve species and habitat conservation goals.


2014 ◽  
Vol 71 (5) ◽  
pp. 585-594 ◽  
Author(s):  
Jianfen Guo ◽  
Guangshui Chen ◽  
Jinsheng Xie ◽  
Zhijie Yang ◽  
Yusheng Yang

2006 ◽  
Vol 36 (7) ◽  
pp. 1770-1780 ◽  
Author(s):  
Yan Boulanger ◽  
Luc Sirois

In this study, postfire coarse woody debris (CWD) dynamics in northern Quebec, Canada, were assessed using a 29-year chronosequence. Postfire woody-debris storage, decomposition rates, and variation of nitrogen and carbon contents of black spruce CWD (Picea mariana (Mill.) BSP) are estimated. The decomposition rate for postfire snags is exceptionally slow (k = 0.00), while the decomposition rate for logs (k = 0.019–0.021) is within previously recorded values for the boreal forest. The low decomposition rate for snags could be related to low moisture content associated with the position of debris and fast bark shedding. Given the low CWD decomposition rates and CWD storage (21.3–66.8 m3·ha–1), carbon losses from postfire CWD are relatively low, varying between 35.5 and 128.8 kg·ha–1·year–1 at the study sites. The nitrogen content in CWD drops quickly between living trees and snags and increases slightly with time since fire in logs. Nitrogen content is not related to wood density or to moisture content of deadwood. Rapid loss of nitrogen is associated with fast decomposition of subcortical tissues, leaching, and insect comminution. The increase in nitrogen content at the oldest site could result from asymbiotic nitrogen fixation, although a longer time span in the chronosequence would probably have revealed a greater nitrogen gain in increasingly decayed CWD.


2007 ◽  
Vol 85 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Nicole J. Fenton ◽  
Catherine Béland ◽  
Sylvie De Blois ◽  
Yves Bergeron

Boreal forest bryophyte communities are made up of distinct colonies of feathermosses that cover the forest floor. In some black spruce ( Picea mariana (Mill.) BSP) boreal forests, Sphagnum spp. establish colonies on the forest floor 30–40 years after the feathermosses, and ultimately expand to dominate the community. The mechanisms that permit the Sphagnum spp. to establish and expand are unknown. The objectives of this study were to examine the establishment and expansion substrates of Sphagnum spp., and the conditions correlated with colony expansion. Forty colonies, in six stands, of Sphagnum capillifolium (Ehrh.) Hedw. were dissected to determine their substrates, and the environmental conditions in which all colonies present were growing were measured. Coarse woody debris was the dominant establishment and early expansion substrate for Sphagnum capillifolium colonies. With age as the control factor, large colonies showed a significant partial correlation with canopy openness, and there were fewer individuals per cm3 in large colonies than there were in small colonies. These results suggest that Sphagnum establishment in these communities is dependent on the presence of coarse woody debris, and expansion is linked to the stand break-up, which would allow an increase in light intensity, and rainfall to reach the colony. Consequently the community change represented by Sphagnum establishment and expansion is initially governed by a stochastic process and ultimately by habitat availability and species competition.


Oecologia ◽  
2002 ◽  
Vol 132 (3) ◽  
pp. 374-381 ◽  
Author(s):  
Chuankuan Wang ◽  
Ben Bond-Lamberty ◽  
Stith T. Gower

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 807
Author(s):  
Abdelwahab Bessaad ◽  
Isabelle Bilger ◽  
Nathalie Korboulewsky

Forest biomass is a sustainable source of renewable energy and a valuable alternative to finite fossil fuels. However, its overharvesting may lead to soil nutrient depletion and threaten future stand productivity, as well as affect the habitat for biodiversity. This paper provides quantitative data on biomass removal, fine woody debris [d ≤ 7 cm], and coarse woody debris [d > 7 cm] left on the forest floor in whole tree harvesting systems. Using tree allometric equations and inventory field methods for woody debris estimation, we assessed biomass removal on nine fuelwood harvesting sites in Central France, as well as fine and coarse woody debris left on the sites. The aboveground biomass estimates showed a high variability between the studied sites, it varied between 118 and 519 Mg ha−1. However, less variability was found among sites managed as coppice-with-standards 174 ± 56 Mg ha−1. Exported biomass was 107 ± 42 Mg ha−1 on average, including 35 ± 9% of fine wood. The amounts of both fine and coarse woody debris left on sites were generally less than 10% of the total harvested biomass in 2/3 of the studied sites. These amounts are lower than the minimum retention levels recommended by the sustainable forest biomass harvesting guidelines. Therefore, more technical effort and additional management measures should be taken to ensure more woody debris, especially in poor forest soils and thus, to guarantee a sustainable biomass harvesting.


Sign in / Sign up

Export Citation Format

Share Document