Antioxidant Enzyme Activity and Oxidative Stress in Bovine Oocyte In Vitro Maturation

IUBMB Life ◽  
2001 ◽  
Vol 51 (1) ◽  
pp. 57-64 ◽  
Author(s):  
P. D. Cetica ◽  
L. N. Pintos ◽  
G. C. Dalvit ◽  
M. T. Beconi
2016 ◽  
Vol 60 (9) ◽  
pp. 1357-1366 ◽  
Author(s):  
Syma Ashraf Waiz ◽  
Mohammad Raies-ul-Haq ◽  
Suman Dhanda ◽  
Anil Kumar ◽  
T. Sridhar Goud ◽  
...  

2012 ◽  
Vol 90 (8) ◽  
pp. 1095-1103 ◽  
Author(s):  
Martine Kienzle Hagen ◽  
Ana Ludke ◽  
Alex Sander Araujo ◽  
Roberta Hack Mendes ◽  
Tânia Gatelli Fernandes ◽  
...  

This study analyzed and compared the content of isoflavones in 2 soy products, the effectiveness of isoflavones as antioxidants, in vitro, and demonstrated the antioxidant effect of a soy diet in rats with myocardial infarction (MI). Isoflavone content was analyzed in soybean hypocotyl (SH) and isolated soy protein (ISP). The quality (TAR) and quantity (TRAP) of antioxidants present in the samples was quantified. The amount of daidzin was higher in SH (9 times) and genistein in ISP (5 times). SH presented a 3-fold increase in TAR, while both products exhibited same TRAP. The rats were fed an ISP diet for 9 weeks. Animals were distributed among 6 treatment groups: (i) Sham Casein; (ii) Infarct Casein < 25%; (iii) Infarct Casein > 25%; (iv) Sham Soy; (v) Infarct Soy < 25%; and (vi) Infarct Soy > 25%. MI was induced 5 weeks after the commencement of the diets. Lipid peroxidation (LPO), antioxidant enzyme activity, and levels of nitrites/nitrates were determined in blood. Rats receiving the ISP diet demonstrated increased activity of antioxidant enzyme activity and nitrite/nitrate content. In addition, the increase in LPO seen in rats subjected to MI was significantly mitigated when the ISP diet was given. These findings suggest a nutritional approach of using a soy-based diet for the prevention of oxidative-stress-related diseases such as heart failure.


2019 ◽  
Vol 18 ◽  
pp. 153473541987281 ◽  
Author(s):  
Irida Dhima ◽  
Stelios Zerikiotis ◽  
Panagiotis Lekkas ◽  
Yannis V. Simos ◽  
Maria Gkiouli ◽  
...  

Background. Cisplatin (cis-diamminedichloroplatinum) is a widely used chemotherapeutic agent for the treatment of various cancers. Although it represents an effective regimen, its application is accompanied by side effects to normal tissues, especially to the kidneys. Cisplatin generates free radicals and impairs the function of antioxidant enzymes. Modulation of cisplatin-induced oxidative stress by specific antioxidant molecules represents an attractive approach to minimize side effects. Methods. We studied the ability of curcumin to sensitize leiomyosarcoma (LMS) cells to cisplatin. Assays for cell proliferation, mitochondrial function, induction of apoptosis, and cell cycle arrest were performed using various concentrations of cisplatin and a concentration of curcumin that caused a nonsignificant reduction in cell viability. Moreover, the effect of curcumin was examined against cisplatin-induced experimental nephrotoxicity. Renal injury was assessed by measuring serum creatinine, blood urea nitrogen (BUN), and the kidney’s relative weight. Oxidative stress was measured by means of enzymatic activities of superoxide dismutase and glutathione peroxidase in the rats’ blood and malondialdehyde levels in rats’ urine. Results. In our study, we found that curcumin sensitizes LMS cells to cisplatin by enhancing apoptosis and impairing mitochondrial function. In an in vivo model of cisplatin-induced experimental nephrotoxicity, intraperitoneal administration of curcumin failed to preserve blood’s antioxidant enzyme activity and decrease lipid peroxidation. Nevertheless, curcumin was able to protect nephrons’ histology from cisplatin’s toxic effect. Conclusion. Our results showed that curcumin can act as chemosensitizer, but its role as an adjunctive cisplatin-induced oxidative stress inhibitor requires further dose-finding studies to maximize the effectiveness of chemotherapy.


1998 ◽  
Vol 94 (4) ◽  
pp. 447-452 ◽  
Author(s):  
E. García-Arumí ◽  
A. L. Andreu ◽  
J. López-Hellín ◽  
S. Schwartz

1. Oxidative damage has been associated with ageing, but there is no agreement as to whether or not it is produced by a decrease in antioxidant defences with the ageing process. In purified lymphocytes from 47 healthy elderly (75.27 ± 0.91 years) and 47 healthy young (29.87 ± 0.53 years) volunteers, we studied the levels of antioxidant enzyme activity (superoxide dismutase, catalase and glutathione peroxidase), protein oxidative damage (as protein carbonyl content) and lysosomal proteolytic activity (cathepsins B, H and L), with and without exposure to oxidative stress produced by 25 μmol/l H2O2. 2. There were no differences in antioxidant enzyme activities in the stressed and non-stressed samples between the young and elderly subjects, indicating that there was no relationship between age and antioxidant enzyme activity even in oxidative stress. However, a dissimilar response to oxidative stress was observed in protein oxidative damage and cathepsin B and L activities, depending on the age of the donor. 3. With these results we conclude that oxidative stress produces greater protein oxidative damage and increased protein degradation in elderly subjects than in young ones; this effect cannot be attributed to dissimilar antioxidant enzyme responses to oxidative stress, since these did not differ between the two age groups.


Sign in / Sign up

Export Citation Format

Share Document