Public Urban Open Space and Human Thermal Comfort: The Implications of Alternative Climate Change and Socio-economic Scenarios

2008 ◽  
Vol 10 (1) ◽  
pp. 31-45 ◽  
Author(s):  
Elizabeth Wilson ◽  
Fergus Nicol ◽  
Leyon Nanayakkara ◽  
Anja Ueberjahn-Tritta
2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Hanna Leona Lokys ◽  
Jürgen Junk ◽  
Andreas Krein

Projected climate change will cause increasing air temperatures affecting human thermal comfort. In the highly populated areas of Western-Central Europe a large population will be exposed to these changes. In particular Luxembourg—with its dense population and the large cross-border commuter flows—is vulnerable to changing thermal stress. Based on climate change projections we assessed the impact of climate change on human thermal comfort over the next century using two common human-biometeorological indices, the Physiological Equivalent Temperature and the Universal Thermal Climate Index. To account for uncertainties, we used a multimodel ensemble of 12 transient simulations (1971–2098) with a spatial resolution of 25 km. In addition, the regional differences were analysed by a single regional climate model run with a spatial resolution of 1.3 km. For the future, trends in air temperature, vapour pressure, and both human-biometeorological indices could be determined. Cold stress levels will decrease significantly in the near future up to 2050, while the increase in heat stress turns statistically significant in the far future up to 2100. This results in a temporarily reduced overall thermal stress level but further increasing air temperatures will shift the thermal comfort towards heat stress.


2016 ◽  
Vol 8 (1) ◽  
pp. 13-25
Author(s):  
Alireza Nikouei ◽  
Roy Brouwer

The main objective of this study is to estimate the welfare values related to sustained water flows in the Zayandeh-Rud River for recreational and cultural amenities in the urban park of Isfahan City in Iran. As is elsewhere the case in arid regions, the drying up of the river due to growing water demand and the increasingly constrained water supply as a result of climate change and more frequent droughts is expected to result in a substantial welfare loss. A double-bounded discrete choice elicitation format is applied in a stated choice survey conducted among local residents and non-residential visitors, focusing on distance-decay and the relationship between income and demand for sustained water flows in publicly provided urban space under climate change. We reject the general finding in the literature that visitors living further away are willing to pay more for unique sites. We show that the recreational services provided by the park can be characterized as a normal economic good for which those living closer by are willing to pay more than those living further away. These results provide an important benchmark for future stated preference research related to welfare valuation of water in urban open space under climate change.


2012 ◽  
Vol 37 (4) ◽  
pp. 50-60
Author(s):  
Shariful Shikder ◽  
Monjur Mourshed ◽  
Andrew Price

Recent climate change projections estimate that the average summertime temperature in the southern part of Great Britain may increase by up to 5.4°C by the end of the century. The general consensus is that projected increases in temperature will render British dwellings vulnerable to summer overheating and by the middle of this century it may become difficult to maintain a comfortable indoor environment, if adaptation measures are not well integrated in the design and operation of new dwellings, which are likely to remain in use beyond the 2050s. The challenge is to reduce overheating risks by integrating building and user adaptation measures, to avoid energy intensive mechanical cooling. Developing guidelines and updating building regulations for adaptation, therefore, requires an understanding of the baseline scenario; i.e. the performance of existing buildings in future climates. This paper aims to investigate the performance of new-build multi-occupancy British dwellings for human thermal comfort in the present-day and projected future climates in four regional cities: Birmingham, Edinburgh, London and Manchester. Evaluations are carried out by a series of dynamic thermal simulations using widely adopted threshold temperature for overheating, as well as adaptive thermal comfort standards. This study thus offers a unique perspective on regional variations of performance and provides a clearer snapshot because of the use of more appropriate adaptive comfort standards in the evaluations. Finally, the paper sheds light on possible personal and building adaptation measures to alleviate overheating risks.


2021 ◽  
Author(s):  
Victor L Barradas ◽  
Monica Ballinas

<p>The urban heat island (UHI) is mostly due to urbanization and it is considered as a nocturnal phenomenon, but it also appears during the day in Mexico City. The UHI in concert with the high temperatures caused by global climate change (CC) may profoundly affect human thermal comfort, which can influence human productivity and morbidity in the spring/summer period. Obesity is a disease manifested by the accumulation of excess body fat with implications for the health of people, and Mexico ranks first in overweight and obesity, where 30% of the population has obesity and near 40% is overweight. The main objective of this investigation was to determine the changes in the degree of thermal comfort of Mexico City inhabitants according to their nutritional status, because of the increase in temperatures due UHI and CC. A series of microclimatological measurements to estimate the physiologically equivalent temperature (PET) were made. Concomitantly, a series of surveys of thermal perception were applied to 1300 passersby. The results show that PET has increased from 1990 to 2010 from 0.0372 °C/year to 0.0887 °C/year in the study sites, besides overestimating the degree of thermal comfort of people with normal weight but underestimating that of overweight and obese people according to the stablished categories or classes. It is concluded that it is imperative that people with overweight and obesity reduce their weight but also should be investigated that influences the unbalanced consumption of food. It is also imperative to mitigate UHI and CC through urban architectural techniques.</p>


ICCREM 2020 ◽  
2020 ◽  
Author(s):  
Boshuai Dong ◽  
Chunjing Shang ◽  
Ming Tong ◽  
Jianhong Cai

2017 ◽  
Vol 16 (9) ◽  
pp. 2097-2111 ◽  
Author(s):  
Mohanadoss Ponraj ◽  
Yee Yong Lee ◽  
Mohd Fadhil Md Din ◽  
Zainura Zainon Noor ◽  
Kenzo Iwao ◽  
...  

2019 ◽  
Vol 4 (11) ◽  
pp. 151
Author(s):  
Nadiyanti Mat Nayan ◽  
David S Jones ◽  
Suriati Ahmad

In 1880, when the British moved their Federated Malay States administrative centre to Kuala Lumpur, the Padang quickly became a symbol of British economic and administrative colonisation, and a nucleus of the socio-cultural development of Kuala Lumpur. This paper discusses the layers of history, symbolism and cultural values that the Padang contributes to the socio-cultural tapestry of both Kuala Lumpur and Malaysia, and the lack of relevant planning and heritage measures to conserve these attributes and characteristics. The conclusions offer avenues to engage with pre- and post-colonisation that enable re-making and the conservation of the iconic space of Kuala Lumpur.Keywords: Urban open space; Merdeka Square; Kuala Lumpur City Hall; National Heritage Act 2005eISSN: 2398-4287 © 2019. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open access article under the CC BYNC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia.DOI: https://doi.org/10.21834/e-bpj.v4i11.1721


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3061 ◽  
Author(s):  
Shazia Noor ◽  
Hadeed Ashraf ◽  
Muhammad Sultan ◽  
Zahid Mahmood Khan

This study provides comprehensive details of evaporative cooling options for building air-conditioning (AC) in Multan (Pakistan). Standalone evaporative cooling and standalone vapor compression AC (VCAC) systems are commonly used in Pakistan. Therefore, seven AC system configurations comprising of direct evaporative cooling (DEC), indirect evaporative cooling (IEC), VCAC, and their possible combinations, are explored for the climatic conditions of Multan. The study aims to explore the optimum AC system configuration for the building AC from the viewpoints of cooling capacity, system performance, energy consumption, and CO2 emissions. A simulation model was designed in DesignBuilder and simulated using EnergyPlus in order to optimize the applicability of the proposed systems. The standalone VCAC and hybrid IEC-VCAC & IEC-DEC-VCAC system configurations could achieve the desired human thermal comfort. The standalone DEC resulted in a maximum COP of 4.5, whereas, it was 2.1 in case of the hybrid IEC-DEC-VCAC system. The hybrid IEC-DEC-VCAC system achieved maximum temperature gradient (21 °C) and relatively less CO2 emissions as compared to standalone VCAC. In addition, it provided maximum cooling capacity (184 kW for work input of 100 kW), which is 85% higher than the standalone DEC system. Furthermore, it achieved neutral to slightly cool human thermal comfort i.e., 0 to −1 predicted mean vote and 30% of predicted percentage dissatisfied. Thus, the study concludes the hybrid IEC-DEC-VCAC as an optimum configuration for building AC in Multan.


Sign in / Sign up

Export Citation Format

Share Document